【題目】如圖,點B,F(xiàn),C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.

(1)求證:ABC≌△DEF;

(2)指出圖中所有平行的線段,并說明理由.

【答案】(1)證明見解析;(2)ABDE,ACDF.

【解析】

試題分析:(1)先證明BC=EF,再根據(jù)SSS即可證明.

(2)結(jié)論ABDE,ACDF,根據(jù)全等三角形的性質(zhì)即可證明.

試題解析:(1)證明:BF=CE,BF+FC=FC+CE,即BC=EF,在ABC和DEF中,AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF(SSS).

(2)結(jié)論:ABDE,ACDF.

理由:∵△ABC≌△DEF,∴∠ABC=DEF,ACB=DFE,ABDE,ACDF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,則∠FEB的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=3(x -5)2的圖象上有兩點P(2,y1)Q(6,y2),則y1y2的大小關(guān)系是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.

(1)試求拋物線的解析式;

(2)記拋物線頂點為D,求△BCD的面積;

(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正方形ABCD的一邊向形外作等邊△ABE,BD與EC交于點F,則∠AFD等于( )

A.60°
B.50°
C.45°
D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

(1)求證:AE=BF;

(2)連接GB,EF,求證:GB∥EF;

(3)若AE=1,EB=2,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于點O,△AOD是正三角形,AD=4,則平行四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①如圖1:A、B是兩個蓄水池,都在河流a的同側(cè),為了方便灌溉作物,要在河邊建一個抽水站,將河水送到A、B兩地,問該站建在河邊什么地方,可使所修的渠道最短,試在圖中確定該點的位置(保留作圖痕跡).
②如圖2:某地有兩個工廠M、N和兩條相交叉的公路a,b現(xiàn)計劃修建一座物資倉庫,希望倉庫到兩個工廠的距離相等,到兩條公路的距離也相等.你能確定倉庫應(yīng)該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計方案.

查看答案和解析>>

同步練習(xí)冊答案