在梯形ABCD中,AD∥BC,AB=CD,BC=4AD,AD=,∠B=45°.直角三角板含45°角的頂點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過(guò)點(diǎn)A,斜邊與CD交于點(diǎn)F,若△ABE是以AB為腰的等腰三角形,則CF=     

解析試題分析:首先理解題意,得出此題應(yīng)該分兩種情況進(jìn)行分析,分別是AB=AE,AB=BE,從而得到最后答案.
根據(jù)已知條件可得,
AB=(BC-AD)÷2÷cosB=3.
①當(dāng)AB=AE時(shí),
∠B=45°,∠AEB=45°,AE=AB=3,
則在Rt△ABE中,BE=3,
故EC=4-3=
易得△FEC為等腰直角三角形,

②當(dāng)AB=BE時(shí),
∵∠B+∠BAE=45°+∠CEF,∠B=45°,
∴∠CEF=∠AEB,
∵∠B=∠C,
∴△ABE∽△ECF,
易得△FEC為等腰直角三角形,


∴CF=4-3;
△ABE∽△FCE,

∴CF=4-3.
考點(diǎn):等腰梯形的性質(zhì),等腰直角三角形的性質(zhì)
點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性強(qiáng),難度較大,是中考常見(jiàn)題,一般在選擇題或填空題的最后一題出現(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E.
(1)試說(shuō)明∠ABD=∠CBD.
(2)若∠C=2∠E,試說(shuō)明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案