在梯形ABCD中,AD∥BC,AB=CD,BC=4AD,AD=,∠B=45°.直角三角板含45°角的頂點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過(guò)點(diǎn)A,斜邊與CD交于點(diǎn)F,若△ABE是以AB為腰的等腰三角形,則CF= .
解析試題分析:首先理解題意,得出此題應(yīng)該分兩種情況進(jìn)行分析,分別是AB=AE,AB=BE,從而得到最后答案.
根據(jù)已知條件可得,
AB=(BC-AD)÷2÷cosB=3.
①當(dāng)AB=AE時(shí),
∠B=45°,∠AEB=45°,AE=AB=3,
則在Rt△ABE中,BE=3,
故EC=4-3=
易得△FEC為等腰直角三角形,
②當(dāng)AB=BE時(shí),
∵∠B+∠BAE=45°+∠CEF,∠B=45°,
∴∠CEF=∠AEB,
∵∠B=∠C,
∴△ABE∽△ECF,
易得△FEC為等腰直角三角形,
∴CF=4-3;
△ABE∽△FCE,
∴CF=4-3.
考點(diǎn):等腰梯形的性質(zhì),等腰直角三角形的性質(zhì)
點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性強(qiáng),難度較大,是中考常見(jiàn)題,一般在選擇題或填空題的最后一題出現(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
8 |
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com