【題目】如圖,AB=AC,添加下列條件,不能使△ABE≌△ACD的是( )
A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC
【答案】D
【解析】
試題分析:本題要判定△ABE≌△ACD,已知AB=AC,∠A是公共角,具備了一組邊對應(yīng)相等和一角相等的條件,故添加∠B=∠C、∠AEB=∠ADC、AE=AD后可分別根據(jù)ASA、AAS、SAS判定△ABE≌△ACD,而添加BE=DC后則不能.
解:A、添加∠B=∠C可利用ASA證明△ABE≌△ACD,故此選項(xiàng)不合題意;
B、添加∠AEB=∠ADC可利用AAS證明△ABE≌△ACD,故此選項(xiàng)不合題意;
C、添加AE=AD可利用SAS證明△ABE≌△ACD,故此選項(xiàng)不合題意;
D、添加EB=DC不能證明△ABE≌△ACD,故此選項(xiàng)符合題意;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為最小的正整數(shù),b是最大的負(fù)整數(shù),c是絕對值最小的數(shù),d是倒數(shù)等于自身的有理數(shù),則a﹣b+c﹣d的值為( )
A 1 B.3 C.1或3 D.2或﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)陣是由偶數(shù)排列而成的:
(1)在數(shù)陣中任意作一類似的框,如果這四個(gè)數(shù)的和為188,能否求出這四個(gè)數(shù)?如果能,求出這些數(shù),如果不能,說明理由.如果和為288,能否求出這四個(gè)數(shù)?說明理由.
(2)有理數(shù)110在上面數(shù)陣中的第 排、第 列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于點(diǎn)E,連接CE交AD于點(diǎn)H,則圖中的等腰三角形有( )
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料并回答問題:
在解分式方程時(shí),小明的解法如下:
解:方程兩邊同乘以(x+1)(x﹣1),得2(x﹣1)﹣3=1①
去括號(hào),得2x﹣1=3﹣1 ②
解得x=
檢驗(yàn):當(dāng)x=時(shí),(x+1)(x﹣1)≠0 ③
所以x=是原分式方程的解 ④
(1)你認(rèn)為小明在哪里出現(xiàn)了錯(cuò)誤 (只填序號(hào))
(2)針對小明解分式方程出現(xiàn)的錯(cuò)誤和解分式方程中的其他重要步驟,請你提出三條解分式方程時(shí)的注意事項(xiàng);
(3)寫出上述分式方程的正確解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).
(1)求線段BC的長;
(2)求線段MN的長;
(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點(diǎn),你能猜想MN的長度嗎?請寫出你的結(jié)論(不需要說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上的點(diǎn)A,B分別表示數(shù)﹣1和2,點(diǎn)C表示A,B兩點(diǎn)間的中點(diǎn),則點(diǎn)C表示的數(shù)為( )
A. 0 B. 0.5 C. 1 D. 1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ACB=90°,點(diǎn)D、E在AB上,將△ACD、△BCE分別沿CD、CE翻折,點(diǎn)A、B分別落在點(diǎn)A′、B′的位置,再將△A′CD、△B′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則∠A′OB′的度數(shù)是( )
A.90° B.120° C.135° D.150°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com