如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以OA為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上一動(dòng)點(diǎn),連結(jié)OBAB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)Dx軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF

(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng)度;

(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);

(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  (1)連結(jié)BC

  ∵A(10,0),∴OA=10 ,CA=5,

  ∵∠AOB=30°,

  ∴∠ACB=2∠AOB=60°,

  ∴弧AB的長(zhǎng)=  4分

  (2)連結(jié)OD,

  ∵OA是⊙C直徑,∴∠OBA=90°,

  又∵ABBD,

  ∴OBAD的垂直平分線,

  ∴ODOA=10,

  在Rt△ODE中,

  OE,

  ∴AEAO-OE=10-6=4,

  由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,

  得△OEF∽△DEA,

  ∴,即,∴EF=3  4分

  (3)設(shè)OEx,

 、佼(dāng)交點(diǎn)EO,C之間時(shí),由以點(diǎn)E、CF為頂點(diǎn)的三角

  形與△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,

  當(dāng)∠ECF=∠BOA時(shí),此時(shí)△OCF為等腰三角形,點(diǎn)EOC

  中點(diǎn),即OE,

  ∴E1(,0);

  當(dāng)∠ECF=∠OAB時(shí),有CE=5-x,AE=10-x,

  ∴CFAB,有CF,

  ∵△ECF∽△EAD,

  ∴,即,解得:,

  ∴E2(,0);

 、诋(dāng)交點(diǎn)E在點(diǎn)C的右側(cè)時(shí),

  ∵∠ECF>∠BOA,

  ∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO,

  連結(jié)BE

  ∵BE為Rt△ADE斜邊上的中線,

  ∴BEABBD,

  ∴∠BEA=∠BAO,

  ∴∠BEA=∠ECF,

  ∴CFBE,

  ∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

  ∴△CEF∽△AED,,

  而AD=2BE,∴

  即,解得<0(舍去),

  ∴E3(,0);

  ③當(dāng)交點(diǎn)E在點(diǎn)O的左側(cè)時(shí),

  ∵∠BOA=∠EOF>∠ECF

  ∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO

  連結(jié)BE,得BEAB,∠BEA=∠BAO

  ∴∠ECF=∠BEA,

  ∴CFBE,

  ∴,

  又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

  ∴△CEF∽△AED,

  而AD=2BE,∴,

  ∴,解得,<0(舍去),

  ∵點(diǎn)Ex軸負(fù)半軸上,∴E4(,0),

  綜上所述:存在以點(diǎn)EC、F為頂點(diǎn)的三角形與△AOB相似,此時(shí)點(diǎn)E坐標(biāo)為:

  (,0)、(,0)、(,0)、(,0)  4分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案