【題目】如圖,Rt△ABCACB=90°,DCEABC繞著點C順時針方向旋轉(zhuǎn)得到的,此時B、C、E在同一直線上

1)旋轉(zhuǎn)角的大小;

2)若AB=10,AC=8,BE的長

【答案】(1)90°;(2)14.

【解析】試題分析:(1)根據(jù)題意∠ACE即為旋轉(zhuǎn)角,只需求出∠ACE的度數(shù)即可.
(2)根據(jù)勾股定理可求出BC,由旋轉(zhuǎn)的性質(zhì)可知CE=CA=8,從而可求出BE的長度.

試題解析:(1∵△DCE是△ABC繞著點C順時針方向旋轉(zhuǎn)得到的,此時點B、CE在同一直線上,
∴∠ACE=90°,即旋轉(zhuǎn)角為90°,
2)在RtABC中,
AB=10AC=8,
BC==6
∵△ABC繞著點C旋轉(zhuǎn)得到△DCE,
CE=CA=8,
BE=BC+CE=6+8=14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC中,ACBCDBC上的一點,連接AD,DF平分∠ADC交∠ACB的外角∠ACE的平分線于F

1)求證:CFAB

2)若∠DAC40°,求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1

2

3

4

5

6

7

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店準備進行裝修,若請甲、乙兩個裝修隊同時施工,8天完成,需付兩隊共3520元費用;若先請甲隊單獨做6天,再請乙隊單獨做12天可以完成,需付兩隊共3480元費用。

(1)甲、乙兩隊工作一天,商場各應(yīng)付多少元?

(2)單獨請哪個隊裝修,商場所付費用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件.由于銷售商突然急需供貨,工廠實際工作效率比原計劃提高了50%,并提前5天完成這批零件的生產(chǎn)任務(wù).求該工廠原計劃每天加工這種零件多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的相伴方程.

1)在方程①,②,③中,寫出是不等式組的相伴方程的序號 .

2)寫出不等式組的一個相伴方程,使得它的根是整數(shù): .

3)若方程都是關(guān)于的不等式組的相伴方程,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:已知:如圖,,.求證:.

老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進行變形,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .

2)接下來,小穎用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線,然后在平行線間畫了一點,連接后,用鼠標拖動點,分別得到了圖,小穎發(fā)現(xiàn)圖正是上面題目的原型,于是她由上題的結(jié)論猜想到圖圖中的與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關(guān)系.

請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

(。┎孪雸D之間的數(shù)量關(guān)系并加以證明;

(ⅱ)補全圖,直接寫出之間的數(shù)量關(guān)系: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F是正方形ABCD的對角線AC上的兩點,AC8,AECF1,則四邊形BEDF的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個關(guān)于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

同步練習(xí)冊答案