(本題滿分12分)如圖,直線AB分別x,y軸正半軸相交于A(a,0)和B(0,b),直線交于y軸與點E,交AB于點F
(1)當(dāng)a=6,b=6時,求四邊形EOAF的面積
(2)若F為線段AB的中點,且AB=時,求證:∠BEF=∠BAO
(1)解:根據(jù)題意得:E(0,3) ………………1分
∵A(6,0),B(0,6)
求得直線AB的函數(shù)關(guān)系式是y=-x+6………………2分
直線EF 和直線AB交于點F,方程組的解是
∴F(2,4)……………………………………………………………………3分
=
=……………………………………………4分
(2)解:∵F為線段AB的中點,由三角形中位線定理得F(a, b)………………………………………5分
又 F在直線EF: 上,
∴×a+3=b………………………………………………………………6分
a=2b-12 ………………………①
又∵AB=
∴a+b=()…… ……② ……………………………………7分
∴(2b-12)+ b=80
整理得:5b-48b+64=0
解得b1=, b2=8
當(dāng)b=時,a<0,不合題意∴b=(舍去) …………………………………8分
當(dāng)b=8時,a=4
∴A(4,0)B(0,8) ……………………………………………………………9分
∴OE=3, BE=5
連接EA,在RT△OAE中,OE=3,OA=4,∴EA=5
∴EA=BE=5
∴△BEA是等腰三角形……………………………………………………10分
又F為線段AB的中點
∴EF⊥AB …………………………………………………………………11分
∴∠BEF=90°-∠EBF
∠BAO=90°-∠OBA
∠EBF=∠OBA
∴∠BEF=∠BAO ………………………………………………………12分
【解析】略
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當(dāng)時,求線段的長;
(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當(dāng)t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,的頂點A、B在二次函數(shù)的圖像上,又點A、B[來分別在軸和軸上,∠ABO=.
1.(1)求此二次函數(shù)的解析式;(4分)
2.
|
點在上述函數(shù)圖像上,當(dāng)與相似時,求點的坐標(biāo).(8分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點,與y軸交于B點,與直線交于A、D兩點。
⑴直接寫出A、C兩點坐標(biāo)和直線AD的解析式;
⑵如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點的縱坐標(biāo).則點落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當(dāng)時,求線段的長;
(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com