【題目】通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個案例,先閱讀再解決后面的問題:
原題:如圖1,點E,F分別在正方形ABCD的邊BC,CD上,,連接EF,求證:EF=BE+DF.
解題由于AB=AD,我們可以延長CD到點G,使DG=BE,易得,可證.再證明,得EF=FG=DG+FD=BE+DF.
問題(1):如圖2,在四邊形ABCD中,AB=AD,,E,F分別是邊BC,CD上的點,且,求證:EF=BE+FD;
問題(2):如圖3,在四邊形ABCD中,,,AB=AD=1,點E,F分別在四邊形ABCD的邊BC,CD上的點,且,求此時的周長
【答案】(1),見解析;(2)周長為.
【解析】
(1)在CD的延長線上截取DG=BE,連接AG,證出△ABE≌△ADG,根據(jù)全等三角形的性質(zhì)得出BE=DG,再證明△AEF≌△AGF,得EF=FG,即可得出答案;
(2)連接AC,證明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可計算△CEF的周長.
證明:(1)在CD的延長線上截取DG=BE,連接AG,如圖2,
∵∠ADF=90°,∠ADF+∠ADG=180°,
∴∠ADG=90°,
∵∠B=90°,
∴∠B=∠ADG=90°,
∵BE=DG,AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
∵∠EAF=∠BAD,
∵∠EAG=∠EAG=(∠EAF+∠FAG),
∴∠EAF=∠FAG,
又∵AF=AF,AE=AG,
∴△AEF≌△AFG(SAS),
∴EF=FG=DF+DG=EB+DF;
(2)解:連接AC,如圖3,
∵AB=AD,BC=CD,AC=AC,
∴△ABC≌△ADC(SSS).
∴∠DAC=∠BAC,
∴∠BAC=∠BAD=60°,
∵∠B=90°,AB=1,
∴在Rt△ABC中,AC=2,BC===,
由(1)得EF=BE+DF,
∴△CEF的周長=CE+CF+EF=2BC=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2017年11月份的月歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是( 。
A.27B.51
C.69D.72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點A多少km處,才能使它到兩所學(xué)校的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB⊥BC,CD⊥BC,垂足分別為B、C,AB=BC,E為BC的中點,且AE⊥BD于F,若CD=4cm,則AB的長度為( 。
A. 4cm B. 8cm C. 9cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=(為常數(shù)),點C為直線AB上一點,點P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.
(1)如圖,當(dāng)點C恰好在線段AB中點時,則PQ=_______(用含的代數(shù)式表示);
(2)若點C為直線AB上任一點,則PQ長度是否為常數(shù)?若是,請求出這個常數(shù);若不是,請說明理由;
(3)若點C在點A左側(cè),同時點P在線段AB上(不與端點重合),請判斷2AP+CQ-2PQ與1的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于E.則結(jié)論:①BE=EC;②∠EDC=∠ECD;③∠B=∠BDE;④△ABC∽△ACD;⑤△DEC是等邊三角形.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC邊長為4,點P,Q分別是AB,BC邊上的動點,且AP =BQ= x,作□PQCR,則用含x的代數(shù)式表示□PQCR的面積為______;當(dāng)PC∥AR時, x =____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點B作BE⊥CD,垂足為E,連結(jié)AE,F為AE上一點,且∠BFE=∠C.
(1)求證: ;
(2)若AB=4,∠BAE=30°,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com