如圖,在直角梯形ABCD中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,點ECD上的一個動點(E不與D重合),過點EEFAC,交AD于點F(當E運動到C時,EFAC重合),把△DEF沿著EF對折,點D的對應點是點G,如圖①.

⑴ 求CD的長及∠1的度數(shù);
⑵ 設DE = x,△GEF與梯形ABCD重疊部分的面積為y.求yx之間的函數(shù)關系式,并求x為何值時,y的值最大?最大值是多少?
⑶ 當點G剛好落在線段BC上時,如圖②,若此時將所得到的△EFG沿直線CB向左平移,速度為每秒1個單位,當E點移動到線段AB上時運動停止.設平移時間為t(秒),在平移過程中是否存在某一時刻t,使得△ABE為等腰三角形?若存在,請直接寫出對應的t的值;若不存在,請說明理由.

30;當時,y的值最大為;

解析試題分析:⑴ 過點A作AH⊥BC于點H ,則AH=AB·=

∴CD=AH= 
   ∴∠CAD=30°
∵EF∥AC   ∴∠1=∠CAD=30°      4分
⑵當點G恰好在BC上時,由折疊可知 △FGE≌△FDE  

∴ GE="DE" =x,∠FEG=∠FED=60°,∴∠GEC=60°
因為△CEG是直角三角形, ∴∠EGC="30°"
∴在Rt△CEG中,EC=EG=x
由DE+EC=CD 得 , ∴x=
① 當

∴當x=時, =
② 當<x≤時,設FG,EG分別交BC于點M、N

∵DE=x  ∴EC=,NE=2
∴NG=GE-NE==
又∵∠MNG=∠ENC=30°,∠G=90°
∴MG==
 


 
∴當時,= 
綜合兩種情形:由于 ∴ 當時,y的值最大為  9分
(3)由題意可知:AB=6,分三種情況:
①當AE=BE時,t=9
②當AB=AE時, t=9-2
③當BA=BE時,t=12-
考點:二次函數(shù)的綜合題
點評:此題將用待定系數(shù)法求二次函數(shù)解析式、動點問題和最小值問題相結合,有較大的思維跳躍,考查了同學們的應變能力和綜合思維能力,是一道好題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案