【題目】某地一周內(nèi)每天的最高氣溫與最低氣溫記錄如下表:

星期

最高氣溫

10℃

12℃

11℃

9℃

7℃

5℃

7℃

最低氣溫

2℃

1℃

0℃

﹣1℃

﹣4℃

﹣5℃

﹣5℃

則溫差最大的一天是星期_____;這一天溫差為_____℃.

【答案】 12.

【解析】

溫差就是最高氣溫與最低氣溫的差,分別計(jì)算每一天的溫差,比較得出結(jié)論.

根據(jù)溫差=最高氣溫-最低氣溫,計(jì)算得這七天的溫差分別是:

周一:10-2=8;周二:12-1=11;周三:11-0=11;周四9-(-1)=10;

周五:7-(-4)=11;周六:5-(-5)=10;周日:7-(-5)=12;

∴溫差最大的一天是星期日;溫差為12℃.

故答案為:日;12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.

當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),如圖2,點(diǎn)A、B都在原點(diǎn)的右邊

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;

如圖3,當(dāng)點(diǎn)A、B都在原點(diǎn)的左邊,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;

如圖4,當(dāng)點(diǎn)A、B在原點(diǎn)的兩邊,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;

回答下列問題:

(1)數(shù)軸上表示1和6的兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和-3的兩點(diǎn)之間的距離是 ;

(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-4,則點(diǎn)A和B之間的距離是 ,若∣AB∣=3,那么x為

(3)當(dāng)x是 時(shí),代數(shù)式

(4)若點(diǎn)A表示的數(shù),點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長度,點(diǎn)Q的速度是每秒個(gè)單位長度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q與點(diǎn)P 相距1個(gè)單位?(請寫出必要的求解過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a<0,b>0,化簡|a|+|2b|﹣|a﹣b|得(
A.b
B.﹣b
C.﹣3b
D.2a+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中沒有實(shí)數(shù)根的方程是( 。

A. (x﹣1)2=1 B. x2+2x﹣10=0 C. x2+4=7 D. x2+x+1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)(萬元/套)

1.5

1.2

售價(jià)(萬元/套)

1.65

1.4

該商場計(jì)劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價(jià) - 進(jìn)價(jià))×銷售量)

(1)該商場計(jì)劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,3),在坐標(biāo)軸上找一點(diǎn)P,使得△AOP是等腰三角形,則這樣的點(diǎn)P共有個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD 中,AB=3BC=4,EF 是對角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).

1)若 GH 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.

2)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.

3)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 E,F 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列判斷:
①一組對邊平行,另一組對邊相等的四邊形是平行四邊形.
②對角線相等的四邊形是矩形.
③對角形互相垂直且相等的四邊形是正方形.
④有一條對角線平分一個(gè)內(nèi)角的平行四邊形為菱形.
其中,不正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案