【題目】如圖,直線CD與直線AB相交于點(diǎn)C,根據(jù)下列語句畫圖(注:可利用三角尺畫圖,但要保持圖形清晰)
(1)過點(diǎn)P作PQ∥AB,交CD于點(diǎn)Q,過點(diǎn)P作PR⊥CD,垂足為R;
(2)若∠DCB=120°,則∠QRC是多少度?并說明理由.
【答案】
(1)如圖,
(2)解:∵PQ∥AB,
∴∠DCB+∠CQP=180°,
∴∠CQP=180°﹣120°=60°,
∵PR⊥CD,
∴∠QPR=90°﹣60°=30°
【解析】(1)利用幾何語言畫圖;(2)根據(jù)平行線的性質(zhì)得到∠CQP=60°,然后利用互余計(jì)算∠QPR的度數(shù).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解垂線的性質(zhì)(垂線的性質(zhì):1、過一點(diǎn)有且只有一條直線與己知直線垂直.2、垂線段最短),還要掌握平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)示例:在圖1中,通過觀察、測量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.
答:AB與AP的數(shù)量關(guān)系和位置關(guān)系分別是 、 .
(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連結(jié)AP,BQ.請你觀察、測量,猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.答:BQ與AP的數(shù)量關(guān)系和位置關(guān)系分別是 、 .
(3)將△EFP沿直線l向左平移到圖3的位置時(shí),EP的延長線交AC的延長線于點(diǎn)Q,連結(jié)AP、BQ.你認(rèn)為(2)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的方格紙中每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,建立如圖所示的平面直角坐標(biāo)系,已知點(diǎn)A(1,0),B(4,0),C(3,3),D(1,4)
(1)描出A、B、C、D、四點(diǎn)的位置,并順次連接ABCD,
(2)四邊形ABCD的面積是 .
(3)把四邊形ABCD向左平移5個(gè)單位,再向下平移2個(gè)單位得到四邊形A'B'C'D',寫出點(diǎn)A'、B'、C'、D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將點(diǎn)A(﹣2,3)向左平移2個(gè)單位長度后,所得點(diǎn)的坐標(biāo)為_____;把A向下平移1個(gè)單位長度后,所得點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙、丙三個(gè)廠家生產(chǎn)的同一種產(chǎn)品中抽取 8 件產(chǎn)品,對其使用壽命跟 蹤調(diào)查.結(jié)果如下(單位:年)
三個(gè)廠家在廣告中都稱該產(chǎn)品的使用壽命是 8 年,請根據(jù)結(jié)果來判斷廠家在廣告中分別 運(yùn)用了平均數(shù)、眾數(shù)、中位數(shù)的哪一種集中趨勢的特征數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解一批空調(diào)的壽命,從中抽取100臺(tái)空調(diào)進(jìn)行試驗(yàn),這個(gè)問題中的樣本是( )
A. 這批空調(diào)的壽命 B. 抽取的100臺(tái)空調(diào)
C. 100 D. 抽取的100臺(tái)空調(diào)的壽命
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com