(本題滿分12分)已知:如圖8,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.(12)

求證:(1)AD=BD;。2)DF是⊙O的切線.

 

【答案】

(1)CD⊥AB、AC=BC、AD=BD

(2)OD⊥DF、DF是⊙O的切線

【解析】

試題分析:證明(1)連接BD∵AC是⊙O的直徑

∴∠ADC=90°∴CD⊥AB∵AC=BC∴AD=BD

(2)連接OD

∵DE⊥AC

∴∠CEF=90°

∵AD=BD   BO=CO

∴DO∥AC

∴∠ODF=∠CEF=90°

∴OD⊥DF

∴DF是⊙O的切線

考點:切線的判定,等腰三角形的性質等

點評:本題主要考查了切線的判定,等腰三角形的性質等知識點.要注意的是要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分12分)

已知:AB是⊙O的直徑,弦CDAB于點G,E是直線AB上一動點(不與點AB、G重合),直線DE交⊙O于點F,直線CF交直線AB于點P.設⊙O的半徑為r.

(1)如圖1,當點E在直徑AB上時,試證明:OE·OPr2

(2)當點EAB(或BA)的延長線上時,以如圖2點E的位置為例,請你畫出符合題意的圖形,標注上字母,(1)中的結論是否成立?請說明理由.

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年濱海新區(qū)大港初中畢業(yè)生學業(yè)考試第一次模擬試卷數(shù)學 題型:解答題

(本題滿分12分)已進入汛期,7年級1班的同學到水庫調查了解汛情。水庫一
共有10個泄洪閘,現(xiàn)在水庫水位已超過安全線,上游的河水仍以一個不變的速度流入水庫。
同學們經過一天的觀察和測量,做了如下記錄:上午打開一個泄洪閘,在2小時內水位繼續(xù)
上漲了0.06米;下午再打開2個泄洪閘后,4小時內水位下降了0.1米。目前水位仍超過安
全線1.2米。
(1)如果打開5個泄洪閘,還需幾個小時水位降到安全線?
(2)如果防汛指揮部要求在6小時內使水位降到安全線,應該再打開幾個泄洪閘?

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省宿遷市)九年級第二次聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

已知:如圖,為平行四邊形ABCD的對角線,的中點,于點,與,分別交于點

求證:⑴

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省蘇州市九年級10月月考數(shù)學卷 題型:解答題

(本題滿分12分)已知,AB為⊙O 的直徑,點E 為弧AB 任意一點,如圖,AC平分∠BAE,交⊙O于C ,過點C作CD⊥AE于D,與AB的延長線交于P.

⑴ 求證:PC是⊙O的切線.⑵ 若∠BAE=60°,求線段PB與AB的數(shù)量關系.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇省揚州市九年級第一學期期末考試數(shù)學卷 題型:解答題

(本題滿分12分)

已知直角坐標系中菱形ABCD的位置如圖,C,D兩點的坐標分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設運動時間為t秒.

 

 

 

 

 

 

 

 

1.(1)填空:菱形ABCD的邊長是      、面積是    、  高BE的長是     ;

2.(2)探究下列問題:

若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當點Q在線段BA上時

②  △APQ的面積S關于t的函數(shù)關系式,以及S的最大值;

3.(3)在運動過程中是否存在某一時刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說明理由.

 

查看答案和解析>>

同步練習冊答案