如圖,一元二次方程x2-2x-3=0的兩根x1,x2是拋物線y=ax2+bx+c與軸的兩個交點A、B的橫坐標,此拋物線與y軸的正半軸交于點C.
(1)求A、B兩點的坐標,并寫出拋物線的對稱軸;
(2)設點B關于點A的對稱點為B' 問:是否存在△BCB′為等腰三角形的情形?若存在,請求出所有滿足條件c的值;若不存在,請直接作否定的判斷,不必說明理由。
(1)∵解一元二次方程x2-2x-3=0的兩根x1=-1,x2=3
∴A點坐標為(-1,0),B點坐標為(3,0),拋物線的對稱軸x=1
(2)由已知得B′(-5,0),C(0,c)且C為y軸上的點,B′O>BO,
       則不可能有 C B′=CB的情形;
若B B′=BC,則有8=,則c=或-(舍去),∴c=
若B B′= B′C,則有8=,則c=或-(舍去),∴c=
∴存在滿足上述條件的點
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,一元二次方程x2+2x-3=0的兩根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交精英家教網點C,B的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點G,則P點坐標為
 
,G點坐標為
 
;
(3)在x軸上有一動點M,當MG+MA取得最小值時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x精英家教網軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一元二次方程x2-2x-3=0的兩根x1,x2是拋物線y=ax2+bx+c與x軸的兩個交點A、B的精英家教網橫坐標,此拋物線與y軸的正半軸交于點C.
(1)求A、B兩點的坐標,并寫出拋物線的對稱軸;
(2)設點B關于點A的對稱點為B′.問:是否存在△BCB′為等腰三角形的情形?若存在,請求出所有滿足條件c的值;若不存在,請直接作否定的判斷,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(24):20.5 二次函數(shù)的一些應用(解析版) 題型:解答題

如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省瀘州市中考數(shù)學模擬試卷(解析版) 題型:解答題

如圖,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(3)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.

查看答案和解析>>

同步練習冊答案