如圖,平面直角坐標(biāo)系的單位是厘米,直線AB的解析式為y=x-6,分別與x 軸y軸相交于A、B 兩點(diǎn).動(dòng)點(diǎn)C從點(diǎn)B出發(fā)沿射線BA以3cm/秒的速度運(yùn)動(dòng),以C點(diǎn)為圓心作半徑為1cm的⊙C.

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)⊙C運(yùn)動(dòng)的時(shí)間為t,當(dāng)⊙C和坐標(biāo)軸相切時(shí),求時(shí)間t的值.
(3)在點(diǎn)C運(yùn)動(dòng)的同時(shí),另有動(dòng)點(diǎn)P以2cm/秒的速度在線段OA上來回運(yùn)動(dòng),過點(diǎn)P作直線l垂直于x軸.若點(diǎn)C與點(diǎn)P同時(shí)分別從點(diǎn)B、點(diǎn)O開始運(yùn)動(dòng),求直線l與⊙C所有相切時(shí)點(diǎn)P的坐標(biāo).

(1)A(6,0),B(0,)  ……各1分,共2分
(2)  綜上t= 或
(3)    

解析試題分析:(1)根據(jù)直線方程分別令x,y值為零,即可得出B,A坐標(biāo).
(2)分圓與y軸、x軸兩種相切情況進(jìn)行討論.
(3)直線與圓第二次相交共有兩次,分別算出四次的相交時(shí)的時(shí)間,然后算出C點(diǎn)坐標(biāo).
考點(diǎn):一次函數(shù)綜合題.
點(diǎn)評:本題重點(diǎn)為分析出直線和圓何時(shí)相切,分情況討論.相切是有交點(diǎn)的臨界點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對應(yīng)點(diǎn)C的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點(diǎn)D作CD的垂線,過點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請問在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案