【題目】如圖所示,正五邊形ABCDE的對(duì)角線AC、BE相交于M

1)求證:四邊形CDEM是菱形;

2)設(shè)MF2=BE·BM,若AB=4,求BE的長(zhǎng).

【答案】(1)證明見解析(2)2+2

【解析】試題分析:(1)先證明CDEM是平行四邊形,由于DE=DC,所以是菱形.

(2) 先證明ABEMAB,得到AB2=BEBMME2=BEBM,可解得BE長(zhǎng)..

試題解析:

1五邊形ABCDE是正五邊形,
∴∠D=××360°=108°,DCA=××360°=72°
∴∠D+DCA=180°,
DEAC;同理可證DCBE,
四邊形DEMC為平行四邊形,而DE=DC,
四邊形CDEM是菱形.

2五邊形ABCDE是正五邊形,
∴∠AEB=××360°=36°,EAM=××360°=72°;
同理可求BAC=ABE=36°
∴△ABEMAB,
ABBE=BMAB,
AB2=BEBM;
ME2=BEBM,
ME=AB=4BM=BE-4,
BEBE-4=16,
解得:BE=2+22-2(舍去).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABP中,CBP邊上一點(diǎn),∠PAC=PBA,O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.(1)求證:PA是⊙O的切線;

(2)過點(diǎn)CCFAD,垂足為點(diǎn)F,延長(zhǎng)CFAB于點(diǎn)G,若AG·AB=12,求AC的長(zhǎng);(3)在滿足(2)的條件下,若AFFD=12,GF=1,求⊙O的半徑及sinACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y=x2的圖象向上平移2個(gè)單位.

1求新圖象的解析式、頂點(diǎn)坐標(biāo)和對(duì)稱軸;

2畫出平移后的函數(shù)圖象;

3求平移后的函數(shù)的最大值或最小值,并求對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:

甲:8,8,7,8,9

乙:5,9,7,10,9

(1)計(jì)算甲、乙兩人射擊成績(jī)的平均數(shù).

(2)計(jì)算甲、乙兩人的射擊成績(jī)的方差,并說明誰(shuí)的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】健身運(yùn)動(dòng)已成為時(shí)尚,某公司計(jì)劃組裝兩種型號(hào)的健身器材共套,捐給社區(qū)健身中心。組裝一套型健身器材需甲種部件個(gè)和乙種部件個(gè),組裝一套型健身器材需甲種部件個(gè)和乙種部件個(gè).公司現(xiàn)有甲種部件個(gè),乙種部件個(gè).

)公司在組裝、兩種型號(hào)的健身器材時(shí),共有多少種組裝方案?

)組裝一套型健身器材需費(fèi)用元,組裝一套型健身器材需費(fèi)用元,求總組裝費(fèi)用最少的組裝方案,并求出最少組裝費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問題:

(1)求被抽樣調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)該校共有1850名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過1小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽(yáng)同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語(yǔ),其具體信息匯集如下:如圖,ABOHCD,相鄰的平行線間的距離相等,ACBD相交于O,ODCD.垂足為D,已知AB=18米,請(qǐng)根據(jù)上述信息求標(biāo)語(yǔ)CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對(duì)角線ACBD交于O點(diǎn),分別過頂點(diǎn)B,C作兩對(duì)角線的平行線交于點(diǎn)E,得平行四邊形OBEC.

(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請(qǐng)證明你的結(jié)論;

(2)當(dāng)四邊形ABCD    形時(shí),四邊形OBEC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案