【題目】小明在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:
如:解方程x(x+4)=6.
解:原方程可變形,得:[(x+2)﹣2][(x+2)+2]=6.
(x+2)2﹣22=6,
(x+2)2=6+22,
(x+2)2=10.
直接開(kāi)平方并整理,得.x1=﹣2+,x2=﹣2﹣.
我們稱(chēng)小明這種解法為“平均數(shù)法”.
(1)下面是小明用“平均數(shù)法”解方程(x+3)(x+7)=5時(shí)寫(xiě)的解題過(guò)程.
解:原方程可變形,得:[(x+a)﹣b][(x+a)+b]=5.
(x+a)2﹣b2=5,
(x+a)2=5+b2.
直接開(kāi)平方并整理,得.x1=c,x2=d.
上述過(guò)程中的a、b、c、d表示的數(shù)分別為 , , , .
(2)請(qǐng)用“平均數(shù)法”解方程:(x﹣5)(x+3)=6.
【答案】(1)5、2、﹣2、﹣8(2)x1=1+,x2=1﹣
【解析】(1)、根據(jù)閱讀材料中的信息確定出上述過(guò)程中的“a”,“b”,“c”,“d”表示的數(shù)即可;(2)、利用“平均數(shù)法”解方程即可.
(1)、原方程可變形,得:[(x+5)﹣2][(x+5)+2]=5.(x+5)2﹣22=5, (x+5)2=5+22.
直接開(kāi)平方并整理,得.x1=﹣2,x2=﹣8.
上述過(guò)程中的a、b、c、d表示的數(shù)分別為5、2、﹣2、﹣8,
(2)、原方程可變形,得:[(x﹣1)﹣4][(x﹣1)+4]=6. (x﹣1)2﹣42=6,
(x﹣1)2=6+42. x﹣1=±, ∴x=1±,
直接開(kāi)平方并整理,得.x1=1+,x2=1﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC方向平移3cm得到△DEF,若△ABC的周長(zhǎng)為20cm,則四邊形ABFD的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商業(yè)中心開(kāi)業(yè),為吸引顧客,特在一指定區(qū)域放置一批按摩休閑椅,供顧客有償體驗(yàn),收費(fèi)如下圖:
(1)若在此按摩椅上連續(xù)休息了1小時(shí),需要支付多少元?
(2)某人在該椅上一次性消費(fèi)18元,那么他在該椅子上最多休息了多久?
(3)張先生到該商場(chǎng)會(huì)見(jiàn)一名客人,結(jié)果客人告知臨時(shí)有事,預(yù)計(jì)4.5小時(shí)后才能到來(lái);那么如果張先生要在該休閑椅上休息直至客人到來(lái),他至少需要支付多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)為的中點(diǎn),以為一邊向外作等邊三角形,連結(jié).
(1)證明: ;
(2)探索與滿(mǎn)足怎樣的數(shù)量關(guān)系時(shí),四邊形是平行四邊形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^(guò)程中,中途休息了一段時(shí)間,設(shè)他從山腳出發(fā)后所用的時(shí)間為(分),所走的路程為(米),與之間的函數(shù)關(guān)系如圖所示,
(1)小明中途休息用了_______分鐘.
(2)小明在上述過(guò)程中所走的過(guò)程為________米
(3)小明休息前爬山的平均速度和休息后爬山的平均速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的圖形是由邊長(zhǎng)為l的正方形按照某種規(guī)律排列而組成的.
(1)觀察圖形,填寫(xiě)下表:
(2)推測(cè)第n個(gè)圖形中,正方形的個(gè)數(shù)為 ,周長(zhǎng)為 (都用含n的代數(shù)式表示).
(3)這些圖形中,任意一個(gè)圖形的周長(zhǎng)y與它所含正方形個(gè)數(shù)x之間的關(guān)系可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)在“蜀南竹!笔召(gòu)毛竹,直接銷(xiāo)售,每噸可獲利100元,進(jìn)行粗加工,每天可加工8噸,每噸可獲利800元;如果對(duì)毛竹進(jìn)行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷(xiāo)售.為此企業(yè)廠長(zhǎng)召集職工開(kāi)會(huì),讓職工討論如何加工銷(xiāo)售更合算.
甲說(shuō):將毛竹全部進(jìn)行粗加工后銷(xiāo)售;
乙說(shuō):30天都進(jìn)行精加工,未加工的毛竹直接銷(xiāo)售;
丙說(shuō):30天中可用幾天粗加工,再用幾天精加工后銷(xiāo)售;
請(qǐng)問(wèn)廠長(zhǎng)應(yīng)采用哪位說(shuō)的方案做,獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為10,是數(shù)軸上位于點(diǎn)左側(cè)一點(diǎn),且,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)數(shù)軸上的點(diǎn)表示的數(shù)是___________,點(diǎn)表示的數(shù)是__________(用含的代數(shù)式表示);
(2)若為線(xiàn)段的中點(diǎn),為線(xiàn)段的中點(diǎn),在點(diǎn)運(yùn)動(dòng)的過(guò)程中,線(xiàn)段的長(zhǎng)度是__________;
(3)動(dòng)點(diǎn)從點(diǎn)處出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)同時(shí)發(fā)出,問(wèn)點(diǎn)運(yùn)動(dòng)多少秒時(shí)與點(diǎn)相距4個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),3秒后,兩點(diǎn)相距15個(gè)單位長(zhǎng)度.已知點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒).
(1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)3秒時(shí)的位置;
(2)若A、B兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),幾秒時(shí),原點(diǎn)恰好處在點(diǎn)A、點(diǎn)B的正中間?
(3)若A、B兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動(dòng),當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動(dòng),遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動(dòng),如此往返,直到B點(diǎn)追上A點(diǎn)時(shí),C點(diǎn)立即停止運(yùn)動(dòng).若點(diǎn)C一直以20單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),那么點(diǎn)C從開(kāi)始運(yùn)動(dòng)到停止運(yùn)動(dòng),行駛的路程是多少個(gè)單位長(zhǎng)度?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com