如圖,圖(1)有1個正方形,圖(2)有5正方形,圖(3)有14 個正方形,依此規(guī)律,第6個圖形有幾個圖形正方形的個數(shù)有
91
91
個.
分析:仔細(xì)觀察圖形知道第一個圖象有1個正方形,第二個有5=12+22個,第三個圖形有14=12+22+32個,由此得到規(guī)律求得第⑦個圖形中正方形的個數(shù)即可.
解答:解:第一個圖象有1個正方形,
第二個有5=12+22個,
第三個圖形有14=12+22+32個,

第六個圖形有1+4+9+16+25+36=91個正方形.
故答案為:91.
點評:本題考查了規(guī)律型問題,解題的關(guān)鍵是仔細(xì)觀察圖形并找到有關(guān)圖形個數(shù)的規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

21、我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
(1)把一個正方形分割成9個小正方形.
一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
(2)把一個正方形分割成10個小正方形.
方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
(3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個正方形分割成n(n≥9)個小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
(1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
(2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、觀察下列由棱長為1的小正方體擺成的圖形,尋找規(guī)律,如圖(1)所示共有1個小立方體,其中1個看得見,0個看不見;如圖(2)所示:共有8個小立方體,其中7個看得見,1個看不見;如圖(3)所示:共有27個小立方體,其中19個看得見,8個看不見…(1)寫出第(6)個圖中看不見的小立方體有
125
個;(2)猜想并寫出第(n)個圖形中看不見的小立方體的個數(shù)為
(n-1)3
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,畫出了8個立體圖形.
(1)找出與圖②具有相同特征的圖形,并說出相同特征是什么;
(2)找出其他具有相同特征的圖形,并說明相同的特征是什么;

[思路探究]
(1)與圖②具有相同特征的有:
圖⑧與圖②,它們都是棱錐;
圖⑤與圖②,它們的水平截面都是五邊形;
圖①,④與圖②,它們都由六個面組成;
圖⑦,⑧與圖②,它們都是錐體;
圖①,④,⑤,⑧與圖②,它們都是由平面圍成的幾何體;等等.
(2)其他具有相同特征的圖形有:
圖③,⑥,⑦,它們都是帶曲面的幾何體;
圖③,⑦,它們至少有一個面是圓;
圖①,④,它們的六個面都是四邊形;等等.
你還能找出其他具有相同特征的圖形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖20,四邊形ABCD中有兩點E、F,使A、B、C、D、E、F中任意三點都不在同一條直線上,連接它們的頂點,得若干線段,把四邊形分成若干個互不重疊的三角形,則所有這些三角形的內(nèi)角和為______;同樣,若四邊形ABCD中有n個點,其中任意三點都不在同一條直線上,以A、B、C、D和這n個點為頂點作成若干個互不重疊的三角形,則所有這些三角形的內(nèi)角和為_________.

查看答案和解析>>

同步練習(xí)冊答案