如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、分別是拋物線、軸的交點,、分別是拋物線的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;
(2)設(shè)是拋物線上與、兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、、為頂點的四邊形是什么特殊的四邊形?說明你的理由.
(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.


(1)(或
(或
(2)以、、為頂點的四邊形為矩形或等腰梯形,理由略
(3), ,

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角坐標(biāo)系xoy中,拋物線L:y=-x2-2x+2與y軸交于點C,以O(shè)C為一邊向左側(cè)作正方形OCBA上;如圖2,把正方形OCBA繞點O順時針旋轉(zhuǎn)α后得到正方形A1B1C1O(0°<α<90°)﹒
(1)B、C兩點的坐標(biāo)分別為
 
、
 
;
(2)當(dāng)tanα﹦
12
時,拋物線L的對稱軸上是否存在一點P,使△PB1C1為直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由.
(3)在拋物線L的對稱軸上是否存在一點P,使△PB1C1為等腰直角三角形?若存在精英家教網(wǎng),請直接寫出此時tanα的值;若不存在,請說明理由﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、、分別是拋物線軸的交點,分別是拋物線、的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;

(2)設(shè)是拋物線上與、兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、、為頂點的四邊形是什么特殊的四邊形?說明你的理由.

(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、、分別是拋物線軸的交點,分別是拋物線、的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;
(2)設(shè)是拋物線上與、兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、、、為頂點的四邊形是什么特殊的四邊形?說明你的理由.
(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門外國語學(xué)校初二第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、、分別是拋物線軸的交點,、分別是拋物線、的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;

(2)設(shè)是拋物線上與、兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、、、為頂點的四邊形是什么特殊的四邊形?說明你的理由.

(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案