如圖,△ABE和△ADC是△ABC分別沿著AB、AC翻折180°形成的,若∠1:∠2:∠3=27:5:4,則∠α的度數(shù)是
90°
90°
分析:根據(jù)三角形的內(nèi)角和和折疊的性質(zhì)得出∠EAC的度數(shù),進(jìn)而得出△EGO∽△CAO,進(jìn)而得出即可.
解答:解:延長(zhǎng)BA交CD于一點(diǎn)M,
∵∠1:∠2:∠3=27:5:4,
∴設(shè)∠1=27x,∠2=5x,∠3=4x,
由∠1+∠2+∠3=180°得:
27x+5x+4x=180°,
解得x=5,
故∠1=27×5=135°,∠2=5×5=25°,∠3=4×5=20°,
∵△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,
∴∠DCA=∠E=∠3=20°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+20°=45°,
∠5=∠2+∠3=25°+20°=45°,
故∠EAC=∠4+∠5=45°+45°=90°,
在△EGO與△CAO中,∠E=∠DCA,∠DOE=∠COA,
∴△EGO∽△CAO,
∴∠α=∠EAC=90°.
故答案為:90°.
點(diǎn)評(píng):本題考查圖形的折疊變化及三角形的內(nèi)角和定理.關(guān)鍵是要理解折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△BCD都是等邊三角形,且每個(gè)角是60°,那么線段AD與EC有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△ACD中,給出以下四個(gè)論斷:
(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
請(qǐng)你以其中三個(gè)論斷為已知,剩下的一個(gè)作為要證明的結(jié)論,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△ACD有公共點(diǎn)A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延長(zhǎng)BE分別交AC、CD于點(diǎn)M、F.求證:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案