【題目】小明跳起投籃,球出手時離地面m,球出手后在空中沿拋物線路徑運動,并在距出手點水平距離4m處達到最高度4m.已知籃筐中心距地面3m,與球出手時的水平距離為8m,建立如圖所示的平面直角坐標系.
(1)求此拋物線對應的函數(shù)關系式;
(2)此次投籃,球能否直接命中籃筐中心?若能,請說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時距離地面多少米可使球直接命中籃筐中心?
【答案】(1)y=;(2)不能正中籃筐中心;3米.
【解析】試題分析:(1)根據(jù)頂點坐標(4,4),設拋物線的解析式為:y=,由球出手時離地面m,可知拋物線與y軸交點為(0,),代入可求出a的值,寫出解析式;
(2)先計算當x=8時,y的值是否等于3,把x=8代入得:y=,所以要想球經(jīng)過(8,3),則拋物線得向上平移3﹣=個單位,即球出手時距離地面3米可使球直接命中籃筐中心.
試題解析:(1)設拋物線為y=,
將(0,)代入,得=,
解得a=,
∴所求的解析式為y=;
(2)令x=8,得y==≠3,
∴拋物線不過點(8,3),
故不能正中籃筐中心;
∵拋物線過點(8,),
∴要使拋物線過點(8,3),可將其向上平移個單位長度,故小明需向上多跳m再投籃(即球出手時距離地面3米)方可使球正中籃筐中心.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(A在B的左邊),與y軸交于點C,拋物線上有一動點P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點P在第四象限運動,點D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點P在第一象限運動,且a<0,連接AP、BP分別交y軸于點E、F,則問 是否與a,c有關?若有關,用a,c表示該比值;若無關,求出該比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=600,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高速路上因趕時間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機測試了6個小轎車的車速情況記錄如下:
車序號 | 1 | 2 | 3 | 4 | 5 | 6 |
車速(千米/時) | 100 | 95 | 106 | 100 | 120 | 100 |
則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時)分別是( )
A.100,95
B.100,100
C.102,100
D.100,103
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個動點,連EC,將線段EC繞點C逆時針旋轉(zhuǎn)60°得到MC,連DM,則在點E運動過程中,DM的最小值是_____。
【答案】1.5
【解析】試題分析:取AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)可得CD=CG,再求出∠DCF=∠GCE,根據(jù)旋轉(zhuǎn)的性質(zhì)可得CE=CF,然后利用“邊角邊”證明△DCF和△GCE全等,再根據(jù)全等三角形對應邊相等可得DF=EG,然后根據(jù)垂線段最短可得EG⊥AD時最短,再根據(jù)∠CAD=30°求解即可.
解:如圖,取AC的中點G,連接EG,
∵旋轉(zhuǎn)角為60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等邊△ABC的對稱軸,
∴CD=BC,
∴CD=CG,
又∵CE旋轉(zhuǎn)到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根據(jù)垂線段最短,EG⊥AD時,EG最短,即DF最短,
此時∵∠CAD=×60°=30°,AG=AC=×6=3,
∴EG=AG=×3=1.5,
∴DF=1.5.
故答案為:1.5.
考點:旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì).
【題型】填空題
【結(jié)束】
19
【題目】分解因式:
(1) ; (2)9(m+n)2﹣16(m﹣n)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點
互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com