【題目】拋物線y=ax2+c與x軸交于A、B兩點(A在B的左邊),與y軸交于點C,拋物線上有一動點P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點P在第四象限運動,點D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點P在第一象限運動,且a<0,連接AP、BP分別交y軸于點E、F,則問 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無關(guān),求出該比值.
【答案】(1)①拋物線解析式為y=x2﹣4;②0<S四邊形BDQP≤;(2)的值與a,c無關(guān),比值為1.
【解析】試題分析:(1)①把 A(-2,0),C(0,-4)代入,求得a、c的值,即可得拋物線的解析式;②連接DB、OP,設(shè)P(, ),因A(-2,0),對稱軸為軸,可得B(2,0),即可得 ,再由點P在第四象限運動,可得x單位取值范圍,由拋物線的圖象即可得△BDP的取值范圍為,因 即可得平行四邊形BDQP面積的取值范圍為;(2)過點P作PG⊥AB,設(shè)A(,0),B(,0),P(, ),由PG∥軸,根據(jù)相似三角形的判定方法可得 , ,再由相似三角形的性質(zhì)可得 , ,代入數(shù)值可得 , ,把這兩個式子相加可得,令,即可得, ,所以,即 ,所以,即可得
所以可得結(jié)論與、無關(guān),比值為1.
試題解析:
(1)①
②連接DB、OP,設(shè)P(, )
∵A(-2,0),對稱軸為軸
∴B(2,0)
∴
∵點P在第四象限運動
∴
∴由拋物線的圖象可得:
∵ ∴
(2)過點P作PG⊥AB,設(shè)A(,0),B(,0),P(, )
∴PG∥軸
∴ ,
∴ ,
∴ ,
∴
∵當(dāng)時,∴,即,
∴
∴ ∴
∴
∴與、無關(guān),比值為1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位“粗心”的同學(xué)在做加減運算時,將“﹣100”錯寫成“+100”進行運算,這樣他得到的結(jié)果比正確答案( )
A.少100
B.少200
C.多100
D.多200
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的塑料袋中裝有紅色、白色球共40個,除顏色外其它都相同,小明通過多次摸球試驗后發(fā)現(xiàn),其中摸到紅色球的頻率穩(wěn)定在15%左右,則口袋中紅色球可能 ( )
A. 4個 B. 6個 C. 34個 D. 36個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:在平面直角坐標(biāo)系xOy中,如果一條拋物線平移后得到的拋物線經(jīng)過原拋物線的頂點,那么這條拋物線叫做原拋物線的過頂拋物線.
如下圖,拋物線F2都是拋物線F1的過頂拋物線,設(shè)F1的頂點為A,F(xiàn)2的對稱軸分別交F1、F2于點D、B,點C是點A關(guān)于直線BD的對稱點.
(1)如圖1,如果拋物線y=x 2的過頂拋物線為y=ax2+bx,C(2,0),那么
①a= ,b= .
②如果順次連接A、B、C、D四點,那么四邊形ABCD為( )
A.平行四邊形 B.矩形 C.菱形 D.正方形
(2)如圖2,拋物線y=ax2+c的過頂拋物線為F2,B(2,c-1).求四邊形ABCD的面積.
(3)如果拋物線的過頂拋物線是F2,四邊形ABCD的面積為,請直接寫出點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明跳起投籃,球出手時離地面m,球出手后在空中沿拋物線路徑運動,并在距出手點水平距離4m處達到最高度4m.已知籃筐中心距地面3m,與球出手時的水平距離為8m,建立如圖所示的平面直角坐標(biāo)系.
(1)求此拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)此次投籃,球能否直接命中籃筐中心?若能,請說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時距離地面多少米可使球直接命中籃筐中心?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、F、C、D在同一條直線上,已知AF=DC,∠A=∠D,BC∥EF,求證:AB=DE.
【答案】證明見解析.
【解析】試題分析:欲證明AB=DE,只要證明△ABC≌△DEF即可.
試題解析:∵AF=CD,
∴AC=DF,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE.
考點:全等三角形的判定與性質(zhì).
【題型】解答題
【結(jié)束】
25
【題目】如圖, ,AE=BD,點D在AC邊上, ,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若,求BDE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com