【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是弧BC的中點(diǎn),連結(jié)CD、AD、OD,給出以下四個(gè)結(jié)論:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正確結(jié)論的序號(hào)是( )
A. ①③ B. ②④ C. ①②③ D. ①④
【答案】D
【解析】AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=∠DAO= ∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴∠DOB=∠CAO,
又∵∠CAO=∠ADC(都對(duì)著半圓。,
∴∠DOB=∠ADC故①正確;
②由題意得,OD=R,AC=R,
∵OE:CE=OD:AC=1: ,
∴OE≠CE,故②錯(cuò)誤;
③∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DEO≠∠DAO,
∴不能證明△ODE和△ADO相似,
∴③錯(cuò)誤;
④∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=12×45°=22.5°,
∴∠COD=45°,
∵AB是半圓直徑,
∴OC=OD,
∴∠OCD=∠ODC=67.5°
∵∠CAD=∠ADO=22.5°(已證),
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△COD,
∴CD2=ODCE=ABCE,
∴2CD2=CEAB.
∴④正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月國(guó)際風(fēng)箏節(jié)期間,王大伯決定銷(xiāo)售一批風(fēng)箏,經(jīng)市場(chǎng)調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷(xiāo)售量為180個(gè),若售價(jià)每提高1元,銷(xiāo)售量就會(huì)減少10個(gè),請(qǐng)回答以下問(wèn)題:
(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷(xiāo)售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤(rùn),售價(jià)應(yīng)定為多少?
(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤(rùn)W最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)化簡(jiǎn):2a(a+b)﹣(a+b)2
(2)如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.試判斷四邊形OCED的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上點(diǎn)A表示的數(shù)是﹣3,把點(diǎn)A向右移動(dòng)5個(gè)單位,然再向左移動(dòng)7個(gè)單位到A′,則A′表示的數(shù)是( 。
A. ﹣5 B. ﹣6 C. ﹣7 D. ﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度,得到正方形ADEF,ED交線段OC于點(diǎn)G,ED的延長(zhǎng)線交線段BC于點(diǎn)P,連AP、AG.
(1)求證:△AOG≌△ADG;
(2)求∠PAG的度數(shù);并判斷線段OG、PG、BP之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)若正方形ABCO的邊長(zhǎng)為,∠1=∠2,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上點(diǎn)A,B表示的數(shù)分別是5、﹣3,它們之間的距離可以表示為( )
A.﹣3+5
B.﹣3﹣5
C.|﹣3+5|
D.|﹣3﹣5|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0, 3)、點(diǎn)C(1, 0),等腰Rt△ACB的頂點(diǎn)B在拋物線上.
(1)求點(diǎn)B的坐標(biāo)及拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P(點(diǎn)B除外),使△ACP是以AC為直角邊的Rt△?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線上是否存在點(diǎn)Q(點(diǎn)B除外),使△ACQ是以AC為直角邊的等腰Rt△?若存在直接寫(xiě)出所有點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com