【題目】如圖一,在平面直角坐標系中,軸正半軸上一點,是第四象限一點,軸,交軸負半軸于,且(a-2)+|b+3|=0,四邊形AOBC=12.

(1)點坐標

(2)如圖二,為線段上一動點(不與點重合),求證:∠ADB+∠DBC-∠OAD=180°

(3)如圖三,點在線段上運動(不與點重合)點在線段上運動(不與點重合)時,連接、∠OAD、∠DEB的平分線交于點,請你探索∠AFE∠ADE之間的關系,并說明理由.

【答案】1C6-3);(2)詳見解析; 3,理由見解析.

【解析】

1)利用非負數(shù)的和為零,各項分別為零,求出、即可;

2)過點軸,根據軸得,再根據

軸,,從而,

,即可證明;

3)過點軸,過點軸,從而得、,故,得到

,因為的角平分線和的角平分線,知,則,再根據軸和

,得,則,故

,所以.

1

是第四象限一點,

6,-3

2)如圖,

過點

3

理由如下:

過點軸,過點

的平分線

的角平分線

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形紙片中,,點邊的中點,折疊紙片,使點落在直線上的處,折痕為經過點的線段.則的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校想了解學生每周的課外閱讀時間情況,隨機調查了部分學生,對學生每周的課外閱讀時間x單位:小時進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:

根據圖中提供的信息,解答下列問題:

1補全頻數(shù)分布直方圖

2求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù)

3請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A0,2),B1,0, C(3,4).

1)在坐標系中秒出個點,畫出三角形ABC;再把三角形ABC先向左平移4個單位長度,再向下平移3個單位長度的三角形。

2)求三角形ABC的面積;

3)設點Px軸上,且三角形ABP與三角形ABC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數(shù)據(成績)進行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:

(說明:成績80分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格)

b.甲校成績在這一組的是:70707071727373737475767778

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:

學校

平均分(單位:分)

中位數(shù)(單位:分)

眾數(shù)(單位:分)

74.2

85

73.5

76

84

根據以上信息,回答下列問題:

1)上表中n的值為_____

2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據可知該學生是___校的學生(填“甲”或“乙”),請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線分別交坐標軸于兩點,直線上任意一點,設點軸和軸的距離分別是,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.

(1)求每個足球和每個籃球的售價;

(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經過點B,則OACBAD的面積之差SOACSBAD為(  )

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東方向55°,距離燈塔為2海里的點A.如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

同步練習冊答案