【題目】如圖,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則OACBAD的面積之差SOACSBAD為( 。

A. 36 B. 12 C. 6 D. 3

【答案】D

【解析】OACBAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結論.

解:設OACBAD的直角邊長分別為a、b,

則點B的坐標為(a+b,ab).

B在反比例函數(shù)的第一象限圖象上,

a+b×ab=a2b2=6

SOACSBAD=a2b2=a2b2=×6=3

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小亮想了解一根彈簧的長度是如何隨所掛物體質量的變化而變化的,他把這根彈簧的上端固定,在其下端懸掛物體.下面是小亮測得的彈簧的長度y與所掛物體質量x的幾組對應值.

所掛質量x/kg

0

1

2

3

4

5

彈簧長度y/cm

30

32

34

36

38

40

(1)上表所反映的變化過程中的兩個變量,________是自變量,________是因變量;

(2)直接寫yx的關系式;

(3)當彈簧長度為130cm(在彈簧承受范圍內)時,求所掛重物的質量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖一,在平面直角坐標系中,軸正半軸上一點,是第四象限一點,軸,交軸負半軸于,且(a-2)+|b+3|=0,四邊形AOBC=12.

(1)點坐標

(2)如圖二,為線段上一動點(不與點重合),求證:∠ADB+∠DBC-∠OAD=180°

(3)如圖三,點在線段上運動(不與點重合),點在線段上運動(不與點重合)時,連接、∠OAD∠DEB的平分線交于點,請你探索∠AFE∠ADE之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018422日是第個世界地球日,今年的主題為“珍惜自然資源呵護美麗國土一講好我們的地球故事”地球日活動周中,同學們開展了豐富多彩的學習活動,活動周期間,兩位家長計劃帶領若干學生去參觀山西地質博物館,他們聯(lián)系了兩家旅行社,報價均為每人元.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是,家長免費,學生都按九折收費.乙旅行社的優(yōu)惠條件是,家長、學生都按八折收費.若只考慮收費,這兩位家長應該選擇哪家旅行社更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關系,說出理由.

解:猜想∠BPD+∠B+∠D=360°

理由:過點P作EF∥AB,

∴∠B+∠BPE=180°(兩直線平行,同旁內角互補)

∵AB∥CD,EF∥AB,

∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)

∴∠EPD+∠D=180°(兩直線平行,同旁內角互補)

∴∠B+∠BPE+∠EPD+∠D=360°

∴∠B+∠BPD+∠D=360°

(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關系,并說明理由.

(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關系,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知B港口位于A觀測點北偏東45°方向,且其到A觀測點正北風向的距離BM的長為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達C處,測得C處位于A觀測點北偏東75°方向,則此時貨輪與A觀測點之間的距離AC的長為( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(1.7,結果精確到個位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調往10輛,需要調往8輛,已知從甲倉庫調運一輛農(nóng)用車到縣和縣的運費分別為40元和80元;從乙倉庫調運一輛農(nóng)用車到縣和縣的運費分別為30元和50元.

1)設乙倉庫調往縣農(nóng)用車輛,求總運費關于的函數(shù)關系式;

2)若要求總運費不超過900元,問共有幾種調運方案?試列舉出來.

3)求出總運費最低的調運方案,最低運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l所對應的函數(shù)表達式為y=x.過點A10,1)作y軸的垂線交直線l于點B1 過點B1作直線l的垂線交y軸于點A2;過點A2y軸的垂線交直線l于點B2 , 則點B2的坐標為(

A. 1,1 B. , C. 22 D. 2,2

查看答案和解析>>

同步練習冊答案