解:(1)∵點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),
∴點(diǎn)B與點(diǎn)D關(guān)于點(diǎn)O成中心對(duì)稱(chēng),
∴OB=OD,
又∵OA=OC,
∴四邊形ABCD的形狀一定是平行四邊形;
(2)①把點(diǎn)B(k,3)代入y=
,解得:k=-
,
過(guò)B作BE⊥x軸于E,則OE=
,EB=3,
∵在Rt△BOE中,tanα=
=
=
,
∴α=60°,
∴OB=2
.
又∵點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),
∴點(diǎn)B、D關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),
∴OB=OD=2
.
∵四邊形ABCD為矩形,且A(-m,0),C(m,0)
∴OA=OB=OC=OD=2
∴m=2
;
②當(dāng)m=2
時(shí),設(shè)B(x,
)則x<0,
∵OB=2
,
∴x
2+(
)
2=(2
)
2,
解得x=±3或±
,
∵x<0,
∴x=-
或-3,
②能使四邊形ABCD為矩形的點(diǎn)B共有2個(gè);,
(3)四邊形ABCD不能是菱形.理由如下:
若四邊形ABCD為菱形,則對(duì)角線AC⊥BD,且AC與BD互相平分,
因?yàn)辄c(diǎn)A、C的坐標(biāo)分別為(-m,0)、(m,0),
所以點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱(chēng),且AC在x軸上,
所以BD應(yīng)在y軸上,
這與“點(diǎn)B、D分別在第二、四象限”矛盾,
所以四邊形ABCD不可能為菱形.
分析:(1)由于反比例函數(shù)的圖象是一個(gè)中心對(duì)稱(chēng)圖形,點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),所以點(diǎn)B與點(diǎn)D關(guān)于點(diǎn)O成中心對(duì)稱(chēng),則OB=OD,又OA=OC,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;
(2)①把點(diǎn)B(k,3)代入y=
,即可求出k的值;過(guò)B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長(zhǎng)度,然后根據(jù)進(jìn)行的對(duì)角線相等得出OA=OB=OC=OD,從而求出m的值;
②當(dāng)m=2
時(shí),設(shè)B(x,
)則x<0,由OB=2
,得出x
2+(
)
2=(2
)
2,解此方程,得x=±3或±
滿(mǎn)足條件的x的值有兩個(gè),故能使四邊形ABCD為矩形的點(diǎn)B共有兩個(gè);
(3)假設(shè)四邊形ABCD為菱形,根據(jù)菱形的對(duì)角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應(yīng)在y軸上,這與“點(diǎn)B、D分別在第二、四象限”矛盾,所以四邊形ABCD不可能為菱形.
點(diǎn)評(píng):本題主要考查了平行四邊形的判定,矩形、菱形的性質(zhì),反比例函數(shù)的性質(zhì)及三角函數(shù)的定義,關(guān)鍵是掌握反比例函數(shù)的圖象是一個(gè)中心對(duì)稱(chēng)圖形.