【題目】已知拋物線y1:y=2(x﹣3)2+1和拋物線y2:y=﹣2x2﹣8x﹣3,若無論k取何值,直線y=kx+km+n被兩條拋物線所截的兩條線段都保持相等,則m=_____,n=_____.
科目:初中數(shù)學 來源: 題型:
【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P(x0,m),Q(1,n)在二次函數(shù)y=(x+a)(x﹣a﹣1)(a≠0)的圖象上,且m<n下列結(jié)論:①該二次函數(shù)與x軸交于點(﹣a,0)和(a+1,0);②該二次函數(shù)的對稱軸是x=; ③該二次函數(shù)的最小值是(a+2)2; ④0<x0<1.其中正確的是_____.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點E是弦AC的中點,連接BE,并延長交半圓O于點D,若OB=2,OE=1,則∠CDE的度數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm.點P、Q是BC邊上兩個動點(點Q在點P右邊),PQ=2cm,點P從點C出發(fā),沿CB向右運動,運動時間為t秒.5s后點Q到達點B,點P、Q停止運動,過點Q作QD⊥BC交AB于點D,連接AP,設△ACP與△BQD的面積和為S(cm),S與t的函數(shù)圖像如圖2所示.
(1)圖1中BC= cm,點P運動的速度為 cm/s;
(2)t為何值時,面積和S最小,并求出最小值;
(3)連接PD,以點P為圓心線段PD的長為半徑作⊙P,當⊙P與的邊相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,頂點為A,且經(jīng)過點,點.
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點M,y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點Q是折線A﹣B﹣C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN1,若點N1落在x軸上,請直接寫出Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則∠BCD= °,cos∠MCN= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):
如圖①,在△ABC中,AD平分∠BAC交BC于點D,則=.提示:過點C作CE∥AD交BA的延長線于點E.
請根據(jù)上面的提示,寫出得到“”這一結(jié)論完整的證明過程.
結(jié)論應用:如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=15,AD平分∠BAC交BC于點D.請直接利用“問題探究”的結(jié)論,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線L:y=ax2+bx+c(a≠0)與x軸交于A、B兩點.與y軸交于C點.且A(﹣1,0),OB=OC=3OA.
(1)求拋物線L的函數(shù)表達式;
(2)在拋物線L的對稱軸上是否存在一點M,使△ACM周長最?若存在,求出點M的坐標;若不存在,請說明理由.
(3)連接AC、BC,在拋物線L上是否存在一點N,使S△ABC=2S△OCN?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com