【題目】綜合題
如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當∠BAC=60°時,將BP旋轉(zhuǎn)到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是;
(2)當∠BAC=120°時,將BP旋轉(zhuǎn)到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD= AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).
【答案】
(1)=,BD=CD+AD
(2)證明:如圖3,設AC與BD相交于點O,在BP上截取BE=CD,連接AE,
過A作AF⊥BD于F.
∵∠CDP=60°,
∴∠CDB=120°.
∵∠CAB=120°,
∴∠CDB=∠CAB,
∵∠DOC=∠AOB,
∴△DOC∽△AOB,
∴∠DCA=∠EBA.
在△DCA與△EBA中,
,
∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB.
∵∠CAB=∠CAE+∠EAB=120°,
∴∠DAE=120°,
∴∠ADE=∠AED= =30°.
∵在Rt△ADF中,∠ADF=30°,
∴DF= AD,
∴DE=2DF= AD,
∴BD=DE+BE= AD+CD,
∴BD﹣CD= AD
(3)解:線段BD、CD與AD之間的數(shù)量關(guān)系為BD+CD= AD或CD﹣BD= AD
【解析】解:(1)如圖2,
∵∠CDP=120°,
∴∠CDB=60°,
∵∠BAC=60°,
∴∠CDB=∠BAC=60°,
∴A、B、C、D四點共圓,
∴∠ACD=∠ABD.
在BP上截取BE=CD,連接AE.
在△DCA與△EBA中,
,
∴△DCA≌△EBA(SAS),
∴AD=AE,∠DAC=∠EAB,
∵∠CAB=∠CAE+∠EAB=60°,
∴∠DAE=60°,
∴△ADE是等邊三角形,
∴DE=AD.
∵BD=BE+DE,
∴BD=CD+AD.
所以答案是=,BD=CD+AD;
【考點精析】掌握圓周角定理和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】在的方格中,每一個小方格的邊長為1,點在小方格的頂點上,請按下列要求分別畫出一個以點為頂點的四邊形,且所畫四邊形的四個頂點都在小方格的頂點上.
(1)在圖①中畫一個一般的平行四邊形(非矩形或菱形),面積為6.
(2)在圖②中畫一個菱形或正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y= 在同一坐標系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,拋物線 過點A(6,0)和點B(3, ).
(1)求拋物線y1的解析式;
(2)將拋物線y1沿x軸翻折得拋物線y2 , 求拋物線y2的解析式;
(3)在(2)的條件下,拋物線y2上是否存在點M,使△OAM與△AOB相似?如果存在,求出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=a,DH=4,平移距離CF為a-2,試用a的代數(shù)式表示陰影部分的面積____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BC=a.作BC邊的三等分點C1,使得CC1:BC1=1:2,過點C1作AC的平行線交AB于點A1,過點A1作BC的平行線交AC于點D1,作BC1邊的三等分點C2,使得C1C2:BC2=1:2,過點C2作AC的平行線交AB于點A2,過點A2作BC的平行線交A1C1于點D2;如此進行下去,則線段AnDn的長度為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中, AD為∠BAC的平分線,AF為BC邊上的高.
(1)若∠B=38°,∠C=76°,求∠DAF的度數(shù).
(2)若∠B=m°,∠C=n°,(m<n).求∠DAF的度數(shù)(用含m、n的式子表示).
(3)若∠C-∠B=30°,則∠DAF=_________度.(填空)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AEF=80°,且∠A=x°,∠C=y°,∠F=z°.若+|y-80-m|+|z-40|=0(m為常數(shù),且0<m<100)
(1) 求∠A、∠C的度數(shù)(用含m的代數(shù)式表示)
(2) 求證:AB∥CD
(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直線AM與直線FM交于點M,直接寫出∠AMF的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com