【題目】在一不透明口袋中裝有大小形狀完全相同的2個黑球和2個白球,先從口袋中模出一個球,不放回,再從口袋中摸出另一個球,則摸出的兩個球顏色不相同的概率為______.
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì):
小宏根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進行了探究.
下面是小宏的探究過程,請補充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | 0 | m | ﹣ | ﹣ | 0 | n | … |
求m,n的值;
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結合函數(shù)的圖象,寫出該函數(shù)的性質(zhì)(兩條即可):
①
② .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A、B兩點,其中點A的坐標為(4,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E,F(xiàn)有下列結論:①b2-4ac<0;②b>0;③5a+b>0;④BD+CE=4.其中結論正確的個數(shù)為( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c=0;④當y>0時,x的取值范圍是﹣1≤x<3;⑤當x<0時,y隨x增大而增大,其中結論正確的是_____(只需填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=a,DE交AC于點E,下列結論:①AD2=AE.AB;②1.8≤AE<5;⑤當AD=時,△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結論是_____.(把你認為正確結論序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】炎熱的夏天來臨之際.為了調(diào)查我校學生消防安全知識水平,學校組織了一次全校的消防安全知識培訓,培訓完后進行測試,在全校2400名學生中,分別抽取了男生,女生各15份成績,整理分析過程如下,請補充完整.
(收集數(shù)據(jù))
男生15名學生測試成績統(tǒng)計如下:
68,72,89,85,82,85,74,92,80,85,76,85,69,78,80
女生15名學生測試成績統(tǒng)計如下:(滿分100分)
82,88,83,76,73,78,67,81,82,80,80,86,82,80,82
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
組別 頻數(shù) | 65.5~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
男生 | 2 | 2 | 4 | 5 | 1 | 1 |
女生 | 1 | 1 | 5 | 6 | 2 | 0 |
(分析數(shù)據(jù))
(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
男生 | 80 | x | 80 | 45.9 |
女生 | 80 | 82 | y | 24.3 |
在表中:x=_____;y=_____.
(2)若規(guī)定得分在80分以上(不含80分)為合格,請估計全校學生中消防安全知識合格的學生有______人.
(3)通過數(shù)據(jù)分析得到的結論是女生掌握消防安全相關知識的整體水平比男生好,請從兩個方面說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉變換,將三條線段PA、PB、PC轉化到一個三角形中,從而求出∠APB=__________;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點O為Rt△ABC內(nèi)一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅家的陽臺上放置了一個曬衣架如圖①.圖②是曬衣架的側面示意圖,立桿AB,CD相交于點O,B,D兩點立于地面.經(jīng)測量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條線段,且EF=32 cm.垂掛在衣架上的連衣裙總長度小于________cm時,連衣裙才不會拖落到地面上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com