【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;

3a+c=0;④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;⑤當(dāng)x<0時(shí),y隨x增大而增大,其中結(jié)論正確的是_____(只需填序號)

【答案】①②③⑤

【解析】

利用拋物線與x軸的交點(diǎn)個(gè)數(shù)可對①進(jìn)行判斷;利用拋物線的對稱性得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對②進(jìn)行判斷;由對稱軸方程得到b=-2a,然后根據(jù)x=-1時(shí)函數(shù)值為0可得到3a+c=0,則可對③進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對④進(jìn)行判斷.

①∵拋物線與x軸有兩個(gè)交點(diǎn),

∴△=b2﹣4ac>0,

4ac<b2,結(jié)論①正確;

②∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),

∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),

∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,結(jié)論②正確;

③∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,

=1,

b=﹣2a.

∵當(dāng)x=﹣1時(shí),y=0,

a﹣b+c=0,即3a+c=0,結(jié)論③正確;

④∵拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)、(3,0),

∴當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3,結(jié)論④錯(cuò)誤;

⑤∵拋物線開口向下,對稱軸為直線x=1,

∴當(dāng)x<0時(shí),yx增大而增大,結(jié)論⑤正確.

綜上所述:正確的結(jié)論有①②③⑤

故答案為:①②③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):在△ABC中,∠B=∠C,點(diǎn)DBC邊上(點(diǎn)BC除外),點(diǎn)EAC邊上,且∠ADE=∠AED,連接DE.

(1)如圖①,若∠B=∠C45

①當(dāng)∠BAD60時(shí),求∠CDE的度數(shù);

②試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.

(2)深入探究:如圖②,若∠B=∠C,但∠C≠45,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形 ABCD 中,AB=2,∠DAB=60°,點(diǎn) EAD 邊的中點(diǎn),點(diǎn) MAB 邊上的一個(gè)動點(diǎn)(不與點(diǎn) A 重合), 延長 MECD 的延長線于點(diǎn) N,連接MD,AN

1)求證:四邊形 AMDN 是平行四邊形.

2)當(dāng) AM 的值為何值時(shí),四邊形 AMDN 是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長為  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點(diǎn)OAC邊上的一個(gè)動點(diǎn),過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F

1)求證:EO=FO;

2)當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以O(shè)為圓心,OB為半徑作圓,過C作CD∥AB交⊙O于點(diǎn)D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,ADBC,垂足為D.給出下列四個(gè)結(jié)論:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正確的結(jié)論有_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t秒,當(dāng)t的值為_____秒時(shí),ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中,∠A140°,∠B120°,∠E90°,CPDP分別是∠BCD、∠EDC的外角平分線,且相交于點(diǎn)P,則∠CPD__________°

查看答案和解析>>

同步練習(xí)冊答案