【題目】如圖,BDABC的中線,ABD的周長比BCD的周長多2 cm.ABC的周長為18 cm,且AC4 cm,求ABBC的長..

【答案】AB8 cm,BC6 cm.

【解析】

BDABC的中線,可得AD=CD=AC,由ABD的周長比BCD的周長大2cm,可得AB-BC=2①,由ABC的周長為18cm,且AC=4cm,可得4+AB+BC=18②,
聯(lián)立①②即可求出ABBC的長.

由題意知CABC18 cm,AC4 cm,∴ABBC14 cm①,

∵點DAC的中點,∴ADDC

CABDCBCD2 cm,

(ABBDAD)(BCBDDC)2 cm,即ABBC2 cm②,

由①②得AB8 cm,BC6 cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲和乙玩一種游戲:從裝有大小相同的個紅球和一個黃球的袋子中,任意摸出球,如果摸到黃球,甲得分;如果摸到紅球,乙得分.

你認(rèn)為這個游戲公平嗎?

假設(shè)玩這個游戲次,甲大約得多少分,乙大約得多少分?

如果你認(rèn)為游戲不公平,那么怎樣修改得分標(biāo)準(zhǔn)才公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機伴我健康行主題活動.他們隨機抽取部分學(xué)生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________

2)補全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸交于點A(﹣1,0)、B(3,0),與y軸交于點C,頂點為D,對稱軸為直線x=1,有下列四個判斷:

①關(guān)于x的一元二次方程ax2+bx+c=0的兩個根分別是x1=﹣1,x2=3;

a﹣b+c=0;

③若拋物線上有三個點分別為(﹣2,y1)、(1,y2)、(2,y3),則y1<y2<y3;

④當(dāng)OC=3時,點P為拋物線對稱軸上的一個動點,則△PCA的周長的最小值是

上述四個判斷中正確的 有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立如圖所示的平面直角坐標(biāo)系.

(1)求點的坐標(biāo):A   ,B   ,C   ,   ,AD的中點E   ;

(2)求以E為頂點,對稱軸平行于y軸,并且經(jīng)過點B,C的拋物線的解析式;

(3)求對角線BD與上述拋物線除點B以外的另一交點P的坐標(biāo);

(4)PEB的面積SPEBPBC的面積SPBC具有怎樣的關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACBEACE,且D、E分別是AB、AC的中點,延長BC至點F,使CF=CE
1)∠ABC的度數(shù).
2)求證:BE=FE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+4,

(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象.

(2)求圖象與x軸的交點A的坐標(biāo),與y軸交點B的坐標(biāo).

(3)利用圖象直接寫出:當(dāng)y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,以AB為直徑的⊙OAC于點E,交BC于點D,PAC延長線上一點,且∠PBCBAC,連接DE,BE

(1)求證:BP是⊙O的切線;

(2)若sinPBC,AB=10,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°.點OAB的中點,邊AC6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長度之和為_____

查看答案和解析>>

同步練習(xí)冊答案