【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.
(1)若EB=OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.
【答案】(1)(,4); (2)y=3x+3.
【解析】分析:(1)根據(jù)點(diǎn)C坐標(biāo)求出反比例函數(shù)的解析式,再求出點(diǎn)E的縱坐標(biāo),即可解決問題.
(2)設(shè)E(m, ),則B(m,0),由四邊形ABCD是平行四邊形,推出CD=AB=2,由DF∥AB,推出,推出,解得m=1,可得E(1,6),設(shè)直線AD的解析式為y=kx+b,利用待定系數(shù)法即可解決問題.
本題解析:(1)∵C(2,3),
把C(2,3)代入y=中,k=6,
∴y= ,
∵CD⊥y軸,
∴OD=3,
∵BE=OD,
∴BE=4,
∴y=4時(shí),4=,
∴x=,
∴點(diǎn)E坐標(biāo)(,4);
(2)設(shè)E(m, ),則B(m,0),
∵四邊形ABCD是平行四邊形,
∴CD=AB=2,
∵DF∥AB,
∴,
∴,
解得m=1,
∴E(1,6),
設(shè)直線AD的解析式為y=kx+b,則有,
解得,
∴直線AD的解析式為y=3x+3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光速約為300000千米/秒,將數(shù)字300000用科學(xué)記數(shù)法表示為( )
A.3×104
B.3×105
C.3×106
D.30×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( 。
A. 1的算術(shù)平方根是1B. 0的平方根是0C. ﹣1的立方根是±1D. 4的平方根是±2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點(diǎn)D,E為圓心,大于 DE的長為半徑作弧,兩弧交于F;
②作射線BF,交邊AC于點(diǎn)H;
③以B為圓心,BK長為半徑作弧,交直線AC于點(diǎn)D和E;
④取一點(diǎn)K,使K和B在AC的兩側(cè);
所以,BH就是所求作的高.其中順序正確的作圖步驟是( )
A.①②③④
B.④③②①
C.②④③①
D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班一個(gè)小組7名同學(xué)的體育測試成績(滿分30分)依次為:27,29,27,25,27,30,25,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A.27,25
B.25,27
C.27,27
D.27,30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com