【題目】(2016四川省樂(lè)山市第24題)如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點(diǎn)D,使△ABD為直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k=2;(2)D(5,0)或(﹣5,0)或(,0)或D(,0).
【解析】
試題分析:(1)首先根據(jù)反比例函數(shù)與正比例函數(shù)的圖象特征,可知A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則O為線段AB的中點(diǎn),故△BOC的面積等于△AOC的面積,都等于1,然后由反比例函數(shù)的比例系數(shù)k的幾何意義,可知△AOC的面積等于,從而求出k的值;
(2)先將與聯(lián)立成方程組,求出A、B兩點(diǎn)的坐標(biāo),然后分三種情況討論:①當(dāng)AD⊥AB時(shí),求出直線AD的關(guān)系式,令y=0,即可確定D點(diǎn)的坐標(biāo);②當(dāng)BD⊥AB時(shí),求出直線BD的關(guān)系式,令y=0,即可確定D點(diǎn)的坐標(biāo);③當(dāng)AD⊥BD時(shí),由O為線段AB的中點(diǎn),可得OD=AB=OA,然后利用勾股定理求出OA的值,即可求出D點(diǎn)的坐標(biāo).
試題解析:(1)∵反比例函數(shù)與正比例函數(shù)的圖象相交于A、B兩點(diǎn),∴A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,∴OA=OB,∴△BOC的面積=△AOC的面積=2÷2=1,又∵A是反比例函數(shù)圖象上的點(diǎn),且AC⊥x軸于點(diǎn)C,∴△AOC的面積=,∴,∵k>0,∴k=2.故這個(gè)反比例函數(shù)的解析式為;
(2)x軸上存在一點(diǎn)D,使△ABD為直角三角形.將與聯(lián)立成方程組得:,解得:,,∴A(1,2),B(﹣1,﹣2),
①當(dāng)AD⊥AB時(shí),如圖1,
設(shè)直線AD的關(guān)系式為,將A(1,2)代入上式得:,∴直線AD的關(guān)系式為,令y=0得:x=5,∴D(5,0);
②當(dāng)BD⊥AB時(shí),如圖2,
設(shè)直線BD的關(guān)系式為,將B(﹣1,﹣2)代入上式得:,∴直線AD的關(guān)系式為,令y=0得:x=﹣5,∴D(﹣5,0);
③當(dāng)AD⊥BD時(shí),如圖3,
∵O為線段AB的中點(diǎn),∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0),
根據(jù)對(duì)稱性,當(dāng)D為直角頂點(diǎn),且D在x軸負(fù)半軸時(shí),D(,0);
故x軸上存在一點(diǎn)D,使△ABD為直角三角形,點(diǎn)D的坐標(biāo)為(5,0)或(﹣5,0)或(,0)或D(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為( 。
A. (4032 ,2) B. (6048,2) C. (4032,0) D. (6048,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,過(guò)點(diǎn)A的直線AD交BC于點(diǎn)D,交y軸與點(diǎn)G,△ABD的面積為△ABC面積的.
(1)直接寫出點(diǎn)D的坐標(biāo);
(2)過(guò)點(diǎn)C作CE⊥AD,交AB交于F,垂足為E.
①求證:OF=OG;(3分) ②求點(diǎn)F的坐標(biāo).
(3)在(2)的條件下,在第一象限內(nèi)是否存在點(diǎn)P,使△CFP為等腰直角三角形,若存在,直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC=90°,∠BOC=60°,OE平分∠BOC,OD平分∠AOB.求:
(1)∠DOE度數(shù);
(2)若∠BOC=α(0<α<90°),其他條件不變,∠DOE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 (1)、(2)都是幾何體的平面展開圖,先想一想,再折一折,然后說(shuō)出圖 (1)、(2)折疊后的幾何體名稱、底面形狀、側(cè)面形狀、棱數(shù)、側(cè)棱數(shù)與頂點(diǎn)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、軸分別相交于點(diǎn)C、B,與直線相交于
點(diǎn)A.
(1)點(diǎn)B、點(diǎn)C和點(diǎn)A的坐標(biāo)分別是(0, )、( ,0)、( , );
(2)求兩條直線與軸圍成的三角形的面積;
(3)在坐標(biāo)軸上是否存在一點(diǎn)Q,使△OAQ的面積等于6,若存在請(qǐng)直接寫出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com