【題目】如圖,中,,,,在上,且的半徑為.問(wèn)當(dāng)在什么范圍內(nèi)取值時(shí)與相離、相切、相交?
【答案】當(dāng)時(shí),與相離;時(shí),與相切;時(shí),與相交.
【解析】
由三角形的內(nèi)角和可求出∠A的大小,根據(jù)含30°直角三角形的性質(zhì)即可得到OD和AO的關(guān)系,
(1)若圓O與AC相離,則有OD大于r,列出關(guān)于x的不等式,求出不等式的解集即可得到x的范圍;
(2)若圓O與AC相切,則有OD=r,求出x的值即可;
(3)若圓O與AC相交,則有OD小于r,列出關(guān)于x的不等式,求出不等式的解集即可得到x的范圍.
作,如圖所示:
∵,,
∴,
∵,
∴,
若圓與相離,則有大于,即,解得:;
若圓與相切,則有等于,即,解得:;
若圓與相交,則有小于,即,解得:;
綜上可知:當(dāng)時(shí),與相離;時(shí),與相切;時(shí),與相交.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則原方程化為y2﹣5y+4=0,解此方程得:y1=1,y2=4.
當(dāng)y=1時(shí),x2﹣1═1,∴x=±.
當(dāng)y=4時(shí),x2﹣1═4,∴x=±.
∴原方程的解為:x1=,x2=﹣,x3=,x4=﹣.
以上方法叫做換元法解方程,達(dá)到了降次的目的,體現(xiàn)了轉(zhuǎn)化思想.
運(yùn)用上述方法解方程:x4﹣8x2+12=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫(huà)出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過(guò)點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,厘米,厘米,點(diǎn)為的中點(diǎn).如果點(diǎn)在線段上以每秒2厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上以每秒厘米的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒).
(1)用含的代數(shù)式表示的長(zhǎng)度;
(2)若點(diǎn)、的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,與是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)、的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,高速公路上有A、B兩點(diǎn)相距25km,C、D為兩村莊,已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)服務(wù)站E,使得C、D兩村莊到E站的距離相等,則AE的長(zhǎng)是( 。km.
A.5B.10C.15D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足為D.AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F
(1)求證:CE=CF.
(2)將圖(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使點(diǎn)E’落在BC邊上,其它條件不變,如圖(2)所示.試猜想:BE'與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=BD,AC=CE,DC、BE交于點(diǎn)F,∠ABD=∠ACE=60°.
(1)求證:BE=CD;
(2)求∠A+∠ABF+∠ACF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com