【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),分別以AB、ACCB為底作頂角為120°的等腰三角形,頂角頂點(diǎn)分別為D、E、F(點(diǎn)E、FAB的同側(cè),點(diǎn)D在另一側(cè))

(1)如圖1,若點(diǎn)CAB的中點(diǎn),則∠AED   ;

(2)如圖2,若點(diǎn)C不是AB的中點(diǎn)

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AB=3,請(qǐng)直接寫(xiě)出EF的長(zhǎng).

【答案】(1) 90°;(2)①見(jiàn)解析;

【解析】

(1)如圖1,過(guò)EEHABH,連接CD,設(shè)EH=x,則AE=2x,AHx,根據(jù)等腰三角形的性質(zhì)得到∠DAC=30°,進(jìn)而得到DC=CE,又因?yàn)?/span>EH∥DC,∴HEDEDC=CED,再進(jìn)一步得到∠AEH=60°,∠HED=30°,即可求出∠AED的大;(2)①延長(zhǎng)FCADH,連接HE,如圖2,根據(jù)等腰三角形的性質(zhì)得到∠FCB=∠FBC=30°,∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,進(jìn)而得到ADECBF,AECFBD,所以四邊形BDHF、四邊形AECH是平行四邊形,進(jìn)而得到△AEH是等邊三角形,再根據(jù)SAS判定定理得到△DHE≌△FCE,∴∠DEF=CEH=60°,∴△DEF是等邊三角形;②如圖3,過(guò)EEMABM,根據(jù)等腰三角形的性質(zhì),求出CD、CE的長(zhǎng),再根據(jù)勾股定理求出DE的長(zhǎng)因?yàn)椤?/span>DEF是等邊三角形,∴EF=DE,即可得解.

(1)如圖1,過(guò)EEHABH,連接CD,

設(shè)EHx,則AE=2x,AHx,

AEEC,

AC=2AH=2x,

CAB的中點(diǎn),ADBD,

CDAB

∵∠ADB=120°,

∴∠DAC=30°,

DC=2x

DCCE=2x

EHDC,

∴∠HEDEDCCED

∵∠AEH=60°,AEC=120°,

∴∠HEC=60°,

∴∠HED=30°,

∴∠AEDAEHHED=90°;

故答案為:90°;

(2)①延長(zhǎng)FCADH,連接HE,如圖2,

CFFB

∴∠FCBFBC,

∵∠CFB=120°,

∴∠FCBFBC=30°,

同理:∠DABDBA=30°,EACECA=30°,

∴∠DABECAFBD,

ADECBF

同理AECFBD,

∴四邊形BDHF、四邊形AECH是平行四邊形,

ECAH,BFHD,

AEEC

AEAH,

∵∠HAE=60°,

∴△AEH是等邊三角形,

AEAHHECE,AHEAEH=60°,

∴∠DHE=120°,

∴∠DHEFCE

DHBFFC

∴△DHE≌△FCESAS),

DEEF,DEHFEC,

∴∠DEFCEH=60°,

∴△DEF是等邊三角形;

②如圖3,過(guò)EEMABM

∵∠ADC=90°,DAC=30°,

∴∠ACD=60°,

∵∠DBA=30°,

∴∠CDBDBC=30°,

CDBCAC,

AB=3,

AC=2,BCCD=1,

∵∠ACE=30°,ACD=60°,

∴∠ECD=30°+60°=90°,

AECE

CMAC=1,

∵∠ACE=30°,

CE

RtDEC中,DE,

由①知:DEF是等邊三角形,

EFDE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線經(jīng)過(guò)點(diǎn)A,作ABx軸于點(diǎn)B,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(1,0),則點(diǎn)C的坐標(biāo)為(  )

A.3,B.C.3,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)yax26ax+9a+1與線段AB有交點(diǎn),且已知點(diǎn)A01)與點(diǎn)B2,3)的坐標(biāo),則a的取值范圍_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為倍根方程,以下關(guān)于倍根方程的說(shuō)法,正確的是(

①方程是倍根方程;②若是倍根方程,則③若點(diǎn)在雙曲線的圖像上,則關(guān)于的方程是倍根方程;

A. B. ①②C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點(diǎn)C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長(zhǎng)為4,設(shè)⊙OAC相交于點(diǎn)E,則AE的長(zhǎng)為( 。

A.B.1C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長(zhǎng)方形,點(diǎn)A、CD的坐標(biāo)分別為A(9,0)、C(04),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OCBA運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.則當(dāng)t____秒時(shí),△ODP是腰長(zhǎng)為5的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,有下列5個(gè)結(jié)論:①4a+2b+c0;②abc0;③bac;④3b2c;⑤a+bmam+b),(m≠1的實(shí)數(shù));其中正確結(jié)論的個(gè)數(shù)為( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過(guò)點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)點(diǎn)PPBl于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A的中點(diǎn).

(1)求證:直線l是⊙O的切線;

(2)若PA=6,求PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,M的半徑為2,圓心M的坐標(biāo)為(3,4),點(diǎn)PM上的任意一點(diǎn),PAPB,且PAPBx軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為(  )

A. 3B. 4C. 6D. 8

查看答案和解析>>

同步練習(xí)冊(cè)答案