已知正方形ABCD中對(duì)角線AC、BD相交于O.
(1)若E是AC上的點(diǎn),過(guò)AC作AG⊥BE于G,AG、BD交于F,如圖,試判斷OE與OF的數(shù)量關(guān)系,并說(shuō)明你判斷的理由.

(2)若點(diǎn)E在AC的延長(zhǎng)線上,AG⊥EB交EB的延長(zhǎng)線于G,AG的延長(zhǎng)線交BD的延長(zhǎng)線于點(diǎn)F,如圖,上述結(jié)論是否還成立嗎?為什么?

解:(1)OE=OF,
∵正方形ABCD中對(duì)角線AC、BD相交于O,
∴AC⊥BD,
∴∠OAF+∠AFO=90°,
∵AG⊥BE,
∴∠EBO+∠BFG=90°,
∵∠BFG=∠AFO,
∴∠OAF=∠EBO,
∵∠AOF=∠BOE,AO=BO,
∴△AOF≌△BOE,
∴OE=OF.

(2)OE=OF還成立,
∵正方形ABCD中對(duì)角線AC、BD相交于O,
∴AC⊥BD,
∴∠OAF+∠AFO=90°,
∵AG⊥BE,
∴∠BEO+∠EAG=90°,
∴∠AFO=∠BEO,
∵∠AOF=∠BOE,AO=BO,
∴△AOF≌△BOE,
∴OE=OF.
分析:(1)根據(jù)已知及正方形的性質(zhì),利用ASA判定△AOF≌△BOE,再根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得到結(jié)論.
(2)圖形雖然有變化,但仍可利用第一問(wèn)的方法來(lái)證明△AOF≌△BOE,從而得到OE=OF.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)正方形的性質(zhì)及全等三角形的判定方法的理解及運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD中,對(duì)角線BD長(zhǎng)為8,則正方形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD中,邊長(zhǎng)為10厘米,點(diǎn)E在AB邊上,BE=6厘米.
(1)如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPE與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPE與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD四邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在正方形ABCD邊上的何處相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)沙)如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長(zhǎng)BE交DF于點(diǎn)G.
(1)求證:△BDG∽△DEG;
(2)若EG•BG=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD中,BD是對(duì)角線,BE平分∠DBC交DC于E點(diǎn),若CE=1,則AB=
2
+1
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知正方形ABCD中的△DCF可以經(jīng)過(guò)旋轉(zhuǎn)得到△ECB.
(1)圖中哪個(gè)點(diǎn)是旋轉(zhuǎn)中心?
(2)按什么方向旋轉(zhuǎn)?旋轉(zhuǎn)角是多少度?
(3)若∠ECB=30°,求∠FCB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案