【題目】數(shù)學(xué)社團(tuán)小組想利用所學(xué)的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點(diǎn)D的仰角為60°,在A處測得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)在一條直線上,請根據(jù)以上數(shù)據(jù)計算GH的長(=1.73,要求結(jié)果精確得到0.1m)
【答案】GH的長約為7.7m.
【解析】
首先過點(diǎn)D作DE⊥AH于點(diǎn)E,設(shè)DE=xm,則CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根據(jù)AE﹣BE=AB=10列出方程(x+2)﹣x=10,解方程求出x的值,進(jìn)而得出GH的長.
如圖,過點(diǎn)D作DE⊥AH于點(diǎn)E,設(shè)DE=xm,則CE=(x+2)m.
在Rt△AEC和Rt△BED中,有tan30°=,
tan60°=,
∴AE=(x+2),BE=x,
∵AE﹣BE=AB=10,
∴(x+2)﹣x=10,
∴x=5﹣3,
∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).
答:GH的長約為7.7m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列要求作圖.
(1)如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用二種不同的方法分別在下圖方格內(nèi)添涂黑二個小正方形,使陰影部分成為軸對稱圖形.(全等的陰影部分為同一種)
(2)在圖1的網(wǎng)格中找出所有能使AB的長度為5的格點(diǎn)B.
(3)在圖2中構(gòu)造一個腰長為5的等腰三角形,使它的三個頂點(diǎn)都在格點(diǎn)上,且三角形的面積為3.5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,Rt△ABC 中,∠ACB=90 ,AC=6cm,BC=8cm,動點(diǎn) P 從點(diǎn) B 出發(fā),在 BA邊上以每秒 5cm 的速度向點(diǎn) A 勻速運(yùn)動,同時動點(diǎn) Q 從點(diǎn) C 出發(fā),在 CB 邊上以每秒 4cm 的 速度向點(diǎn) B 勻速運(yùn)動,運(yùn)動時間為 t 秒(0<t<2),連接 PQ.
(1)若△BPQ 與△ABC 相似,求 t 的值;
(2)當(dāng) t 為何值時,四邊形 ACQP 的面積最小,最小值是多少?
(3)連接 AQ,CP,若 AQ⊥CP,求 t 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為更新果樹品種,某果園計劃新購進(jìn)A、B兩個品種的果樹苗栽植培育,若計劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn),分別是,上的點(diǎn),,相交于點(diǎn),.
(1)如圖1,求證:;
(2)作交的延長線于點(diǎn),.
①如圖2,求證:;
②如圖3,過點(diǎn)作于點(diǎn),若,,直接寫出的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①作的平分線交于點(diǎn);
②作邊的垂直平分線,與相交于點(diǎn);
③連接,.
請你觀察圖形解答下列問題:
(1)線段,,之間的數(shù)量關(guān)系是________;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),交軸于點(diǎn),頂點(diǎn)為,其對稱軸交軸于點(diǎn).直線經(jīng)過、兩點(diǎn),交拋物線的對稱軸于點(diǎn),其中點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的表達(dá)式;
(2)連接,求的周長;
(3)若是拋物線位于直線的下方且在其對稱軸左側(cè)上的一點(diǎn),當(dāng)四邊形的面積最大時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc<0;②2a﹣b<0;③b2>(a+c)2;④點(diǎn)(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com