(2011•重慶)如圖,矩形ABCD中,AB=6,BC=2,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達(dá)A點后,立即以原速度沿AO返回;另一動點F從P點發(fā)發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當(dāng)兩點相遇時停止運動,在點E、F的運動過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運動的時間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)在整個運動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)設(shè)EG與矩形ABCD的對角線AC的交點為H,是否存在這樣的t,使△AOH是等腰三角形?若存大,求出對應(yīng)的t的值;若不存在,請說明理由.
解:(1)當(dāng)邊FG恰好經(jīng)過點C時,∠CFB=60°,BF=3﹣t,在Rt△CBF中,BC=2,tan∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴當(dāng)邊FG恰好經(jīng)過點C時,t
(2)當(dāng)0≤t<1時,S=2t+4;
當(dāng)1≤t<3時,S=﹣t2+3t+;
當(dāng)3≤t<4時,S=﹣4t+20
當(dāng)4≤t<6時,S=t2﹣12t+36;
(3)存在.
理由如下:在Rt△ABC中,tan∠CAB==,
∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,
∴AE=HE=3﹣t或t﹣3,
1)當(dāng)AH=AO=3時,(如圖②),過點E作EM⊥AH于M,則AM=AH=
在Rt△AME中,cos∠MAE═,即cos30°=,
∴AE=,即3﹣t=或t﹣3=,
∴t=3﹣或t=3+,

2)當(dāng)HA=HO時,(如圖③)則∠HOA=∠HAO=30°,
又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,∴AE+2AE=3,AE=1,
即3﹣t=1或t﹣3=1,∴t=2或t=4;

3)當(dāng)OH=OA時,(如圖④),則∠OHA=∠OAH=30°,
∴∠HOB=60°=∠HEB,∴點E和點O重合,
∴AE=3,即3﹣t=3或t﹣3=3,t=6(舍去)或t=0;

綜上所述,存在5個這樣的t值,使△AOH是等腰三角形,即t=3﹣或t=3+或t=2或t=2或t=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)如圖1,在△ABC中,AB=AC,D是底邊BC上的一點,BD>CD,將△ABC
沿AD剪開,拼成如圖2的四邊形ABDC′.
(1)四邊形ABDC′具有什么特點?
(2)請同學(xué)們在圖3中,用尺規(guī)作一個以MN,NP為鄰邊的四邊形MNPQ,使四邊形MNPQ具有上述特點(要求:寫出作法,但不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•濱州)如圖,在△ABC中,點O是AC邊上(端點除外)的一個動點,過點O作直線MN∥BC.設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F,連接AE、AF.那么當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011貴州安順,25,10分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,且AF=CE=AE
⑴說明四邊形ACEF是平行四邊形;
⑵當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于點O,過點A作AE⊥BC于點E,若BC=2AD=8,則tan∠ABE=__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形紙片ABCD中,AD//BC,∠A=90º,∠C=30º.折疊紙片使BC經(jīng)過點D,點C落在點E處,BF是折痕,且BF=CF=8.
(1)求∠BDF的度數(shù);
(2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
(1)如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BCCD邊上,高AG與正方形的邊長相等,求的度數(shù).
(2)如圖②,在Rt△ABD中,,,點M,NBD邊上的任意兩點,且,將△ABM繞點A逆時針旋轉(zhuǎn)至△ADH位置,連接,試判斷MNND,DH之間的數(shù)量關(guān)系,并說明理由.
(3)在圖①中,連接BD分別交AE,AF于點MN,若,,求AG,MN的長.
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題8分)如圖,射線PG平分∠EPF,O為射線PG上一點,以O為圓心,10為半徑作⊙O,分別與∠EPF的兩邊相交于A、BC、D,連結(jié)OA,此時有OA//PE
(1)求證:AP=AO
(2)若tan∠OPB=,求弦AB的長;
(3)若以圖中已標(biāo)明的點(即P、A、BC、DO)構(gòu)造四邊形,則能構(gòu)成菱形的四個點為 ▲ ,能構(gòu)成等腰梯形的四個點為 ▲  ▲  ▲ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,AB∥CD,AD=BC=2,∠A=60°,BD平分∠ABC,則這個梯形的周長是____.

查看答案和解析>>

同步練習(xí)冊答案