已知一次函數(shù)y=mx+2m+8與x軸、y軸交于點(diǎn)A、B,若圖象經(jīng)過(guò)點(diǎn)C(2,4).
(1)求一次函數(shù)的解析式;
(2)過(guò)點(diǎn)C作x軸的平行線(xiàn),交y軸于點(diǎn)D,在△OAB邊上找一點(diǎn)E,使得△DCE構(gòu)成等腰三角形,求點(diǎn)E的坐標(biāo);
(3)點(diǎn)F是線(xiàn)段OB(不與點(diǎn)O、點(diǎn)B重合)上一動(dòng)點(diǎn),在線(xiàn)段OF的右側(cè)作正方形OFGH,連接AG、BG,設(shè)線(xiàn)段OF=t,△AGB的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
分析:(1)將C坐標(biāo)代入一次函數(shù)解析式中求出m的值,即可確定出一次函數(shù)解析式;
(2)根據(jù)題意畫(huà)出相應(yīng)的圖形,根據(jù)圖形找出所有滿(mǎn)足題意E的坐標(biāo)即可;
(3)分兩種情況考慮:①當(dāng)0<t<3時(shí),如圖1所示;由四邊形OFGH是正方形,利用正方形的邊長(zhǎng)相等得到OF=OH=FG=GH=t,進(jìn)而確定得到AH=BF=OB-OF=6-t,由S△ABG=S△AOB-S△FBG-S△AHG-S正方形,即可列出關(guān)系式;②當(dāng)3<t<6時(shí),如圖2所示,同理由S△ABG=S△FBG+S△AHG+S正方形-S△AOB列出關(guān)系式.
解答:
解:(1)把點(diǎn)C(2,4)代入一次函數(shù)y=mx+2m+8得:2m+2m+8=4,
解得m=-1,
則一次函數(shù)解析式為y=-x+6;

(2)點(diǎn)E在OB上時(shí),E1(0,2),E2(0,6);
作出CD的垂直平分線(xiàn),交直線(xiàn)AB于E4,交x軸于E3,如圖3所示,
可得出點(diǎn)E在OA上時(shí),E3(1,0);
點(diǎn)E在A(yíng)B上時(shí),E4(1,5);
過(guò)E5作E5M⊥CD,△E5MC為等腰直角三角形,
∵E5C=CD=2,
∴E5M=MC=
2
2
E5C=
2
,
∴E5(2-
2
,4+
2

同理E6(2+
2
,4-
2
);

(3)分兩種情況考慮:
①當(dāng)0<t<3時(shí),如圖1所示;
∵四邊形OFGH是正方形,
∴OF=OH=FG=GH=t,AH=BF=OB-OF=6-t,
則S△ABG=S△AOB-S△FBG-S△AHG-S正方形=18-
1
2
t(6-t)-
1
2
t(6-t)-t2=18-6t;
②當(dāng)3<t<6時(shí),如圖2所示,同理得到S△ABG=S△FBG+S△AHG+S正方形-S△AOB=6t-18.
點(diǎn)評(píng):此題考查了一次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求一次函數(shù)解析式,等腰三角形的性質(zhì),坐標(biāo)與圖形性質(zhì),正方形的性質(zhì),利用了數(shù)形結(jié)合及分類(lèi)討論的思想,畫(huà)出相應(yīng)的圖形是本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=mx+m2-2的圖象在y軸上的截距是6,且圖象經(jīng)過(guò)第一、二、四象限,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=mx+b與反比例函數(shù)y=
kx
相交于點(diǎn)A(-1,2)和點(diǎn)B(4,m),求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=mx+n(m≠0)與反比例函數(shù)y=
kx
(k≠0)的圖象相交于A(yíng)(-2,3)、C (3,p) 兩點(diǎn),過(guò)A作x軸的垂線(xiàn)交x軸于B.
(1)求反比例函數(shù)的表達(dá)式;
(2)求點(diǎn)C坐標(biāo);
(3)求一次函數(shù)的表達(dá)式;
(4)求三角形AOM的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=mx+2的圖象與兩坐標(biāo)軸圍成的三角形的面積為1,則常數(shù)m=
±2
±2

查看答案和解析>>

同步練習(xí)冊(cè)答案