作業(yè)寶如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°,OF⊥AE.
(1)試判斷CD與⊙O的關(guān)系,并說(shuō)明理由.
(2)若⊙O的半徑為3cm,OF=2cm.求BE的值.

解:(1)CD與⊙O相切.理由如下:
連結(jié)OD,
∴∠AOD=2∠AED=2×45°=90°,
∴OD⊥AB,
∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴OD⊥DC,
∴DC為⊙O的切線;

(2)∵OF⊥AE,
∴AF=EF,
而OA=OB,
∴OF為△ABE的中位線,
∴BE=2OF=2×2=4(cm).
分析:(1)連結(jié)OD,先根據(jù)圓周角定理得到∠AOD=2∠AED=90°,再由四邊形ABCD是平行四邊形得到AB∥DC,則OD⊥DC,然后根據(jù)切線的判定得到DC為⊙O的切線;
(2)由OF⊥AE,根據(jù)垂徑定理得到AF=EF,易得OF為△ABE的中位線,軟件利用BE=2OF進(jìn)行計(jì)算即可.
點(diǎn)評(píng):本題考查了切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了垂徑定理、圓周角定理和平行線四邊形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案