如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)AB=3CB嗎?請(qǐng)說(shuō)明理由.
(1)如圖,連接OD,
∵∠BAD=∠B=30°
∴∠ADO=∠BAD=∠B=30°,
則∠ADB=120°,
∴∠ODB=90°,
又∵D為⊙O上一點(diǎn),
∴BD是⊙O切線;

(2)AB=3CB
∵∠ADC=90°
∴∠CDB=∠DBC=30°,∠ACD=60°,
則DC=CB,AC=2DC,
即AC=2CB,
所以AB=3CB.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O′經(jīng)過(guò)⊙O的圓心,E、F是兩圓的交點(diǎn),直線OO′交⊙O′于點(diǎn)P,交EF于點(diǎn)C,交⊙O于點(diǎn)Q,且EF=2
15
,sin∠P=
1
4

(1)求證:PE是⊙O的切線;
(2)求⊙O和⊙O′的半徑的長(zhǎng);
(3)若點(diǎn)A在劣弧
QF
上運(yùn)動(dòng)(與點(diǎn)Q、F不重合),連接PA交劣弧
DF
于點(diǎn)B,連接BC并延長(zhǎng)交⊙O于點(diǎn)G,設(shè)CG=x,PA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(4,3),⊙A的半徑為2,過(guò)A作直線L平行于x軸,點(diǎn)P在直線L上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在⊙A上時(shí),請(qǐng)直接寫(xiě)出它的坐標(biāo);
(2)設(shè)點(diǎn)P的橫坐標(biāo)為6
2
,試判斷直線OP與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=30°,D為BC的中點(diǎn),△ABD的外接圓⊙O與AC交于F點(diǎn),過(guò)A作DF的垂線交DF的延長(zhǎng)線于點(diǎn)E.
(1)試判斷AE與⊙O的位置關(guān)系;
(2)若斜邊BC=12,求AC•AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是半圓O的直徑,點(diǎn)C是⊙O上一點(diǎn)(不與A,B重合),連接AC,BC,過(guò)點(diǎn)O作ODAC交BC于點(diǎn)D,在OD的延長(zhǎng)線上取一點(diǎn)E,連接EB,使∠OEB=∠ABC.
(1)求證:BE是⊙O的切線;
(2)若OA=10,BC=16,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,C為
AE
中點(diǎn),CD⊥BE于D.
(1)判斷DC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若DC=3,⊙O半徑為5,求DE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,且⊙O1過(guò)點(diǎn)O2,PB是⊙O2的直徑,A為⊙O2上的點(diǎn),連接AB,過(guò)O1作O1C⊥BA于C,連接CO2.已知PA=
4
3
,PB=4.
(1)求證:BA是⊙O1的切線;
(2)求∠BCO2的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,圓(直徑為
3
8
)的切點(diǎn)分別為A,B,C,那么圖中的距離x=______.(用最簡(jiǎn)分?jǐn)?shù)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O是Rt△ABC中以直角邊AB為直徑的圓,⊙O與斜邊AC交于D,過(guò)D作DH⊥AB于H,又過(guò)D作直線DE交BC于點(diǎn)E,使∠HDE=2∠A.
求證:(1)DE是⊙O的切線;(2)OE是Rt△ABC的中位線.

查看答案和解析>>

同步練習(xí)冊(cè)答案