【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分別繞直線AB和BC旋轉(zhuǎn)一周,所得幾何體的地面圓的周長分別記作l1 , l2 , 側(cè)面積分別記作S1 , S2 , 則( )

A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4

【答案】A
【解析】解:∵l1=2π×BC=2π,
l2=2π×AB=4π,
∴l(xiāng)1:l2=1:2,
∵S1= ×2π× = π,
S2= ×4π× =2 π,
∴S1:S2=1:2,
故選A.
【考點精析】認(rèn)真審題,首先需要了解圓錐的相關(guān)計算(圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與y軸交于點C,其頂點記為M,自變量x=﹣1和x=5對應(yīng)的函數(shù)值相等.若點M在直線l:y=﹣12x+16上,點(3,﹣4)在拋物線上.
(1)求該拋物線的解析式;
(2)設(shè)y=ax2+bx+c對稱軸右側(cè)x軸上方的圖象上任一點為P,在x軸上有一點A(﹣ ,0),試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出相應(yīng)的P點橫坐標(biāo)x的取值范圍.
(3)直線l與拋物線另一交點記為B,Q為線段BM上一動點(點Q不與M重合),設(shè)Q點坐標(biāo)為(t,n),過Q作QH⊥x軸于點H,將以點Q,H,O,C為頂點的四邊形的面積S表示為t的函數(shù),標(biāo)出自變量t的取值范圍,并求出S可能取得的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<0;②當(dāng)x>1時,y的值隨x值的增大而減。
③當(dāng)x=2時,y=5;④3是方程ax2+(b﹣1)x+c=0的一個根;
其中正確的有 . (填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):

次數(shù)
運動員

1

2

3

4

5

10

8

9

10

8

10

9

9

a

b

某同學(xué)計算出了甲的成績平均數(shù)是9,方差是
S2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,請作答:

(1)在圖中用折線統(tǒng)計圖將甲運動員的成績表示出來;
(2)若甲、乙射擊成績平均數(shù)都一樣,則a+b=;
(3)在(2)的條件下,當(dāng)甲比乙的成績較穩(wěn)定時,請列舉出a、b的所有可能取值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= 的圖象如圖所示,點P是y軸負(fù)半軸上一動點,過點P作y軸的垂線交圖象于A,B兩點,連接OA、OB.下列結(jié)論:
①若點M1(x1 , y1),M2(x2 , y2)在圖象上,且x1<x2<0,則y1<y2;
②當(dāng)點P坐標(biāo)為(0,﹣3)時,△AOB是等腰三角形;
③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當(dāng)點P移動到使∠AOB=90°時,點A的坐標(biāo)為(2 ,﹣ ).
其中正確的結(jié)論個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園廣播主持人培訓(xùn)班開展比賽活動,分為 A、B、C、D四個等級,對應(yīng)的成績分別是9分、8分、7分、6分,根據(jù)如圖不完整的統(tǒng)計圖解答下列問題:
(1)補全下面兩個統(tǒng)計圖(不寫過程);
(2)求該班學(xué)生比賽的平均成績;
(3)現(xiàn)準(zhǔn)備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學(xué)生的概率?

查看答案和解析>>

同步練習(xí)冊答案