【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

【答案】
(1)證明:在△ADE與△CDE中,

,

∴△ADE≌△CDE,

∴∠ADE=∠CDE,

∵AD∥BC,

∴∠ADE=∠CBD,

∴∠CDE=∠CBD,

∴BC=CD,

∵AD=CD,

∴BC=AD,

∴四邊形ABCD為平行四邊形,

∵AD=CD,

∴四邊形ABCD是菱形


(2)證明:∵BE=BC

∴∠BCE=∠BEC,

∵∠CBE:∠BCE=2:3,

∴∠CBE=180× =45°,

∵四邊形ABCD是菱形,

∴∠ABE=45°,

∴∠ABC=90°,

∴四邊形ABCD是正方形


【解析】(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)由BE=BC可得△BEC為等腰三角形,可得∠BCE=∠BEC,利用三角形的內(nèi)角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四邊形ABCD是正方形.
【考點精析】本題主要考查了正方形的判定方法的相關知識點,需要掌握先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于點A、B兩點,與y軸交于C點,點B的坐標為(3,0),拋物線與直線y=﹣ x+3交于C、D兩點.連接BD、AD.
(1)求m的值.
(2)拋物線上有一點P,滿足S△ABP=4S△ABD , 求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分別繞直線AB和BC旋轉(zhuǎn)一周,所得幾何體的地面圓的周長分別記作l1 , l2 , 側(cè)面積分別記作S1 , S2 , 則( )

A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.

(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,AC=3,BC=4.分別以點A、B為圓心畫圓.如果點C在⊙A內(nèi),點B在⊙A外,且⊙B與⊙A內(nèi)切,那么⊙B的半徑長r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點B在y軸上,若反比例函數(shù)y= (k≠0)的圖象過點C,則該反比例函數(shù)的表達式為(
A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為一個矩形紙片,AB=3,BC=2,動點P自D點出發(fā)沿DC方向運動至C點后停止,△ADP以直線AP為軸翻折,點D落在點D1的位置,設DP=x,△AD1P與原紙片重疊部分的面積為y.

(1)當x為何值時,直線AD1過點C?
(2)當x為何值時,直線AD1過BC的中點E?
(3)求出y與x的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.(x﹣y)2=x2﹣y2
B.| ﹣2|=2﹣
C. =
D.﹣(﹣a+1)=a+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了備戰(zhàn)初三物理、化學實驗操作考試,某校對初三學生進行了模擬訓練,物理、化學各有4各不同的操作實驗題目,物理用番號①、②、③、④代表,化學用字母a、b、c、d表示,測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.
(1)請用樹形圖法或列表法,表示某個同學抽簽的各種可能情況.
(2)小張同學對物理的①、②和化學的b、c號實驗準備得較好,他同時抽到兩科都準備的較好的實驗題目的概率是多少?

查看答案和解析>>

同步練習冊答案