【題目】如圖,△ABC是等邊三角形,AC上有一點(diǎn)D,分別以BD為邊作等邊△BDE和等腰△BDF,邊BC、DE交于點(diǎn)H,點(diǎn)FBA延長線上且DBDF,連接CE

1)若AB8,AD4,求△BDF的面積;

2)求證:BCAF+CE

【答案】112;(2)詳見解析.

【解析】

1)作DHABH,如圖1,利用等邊三角形的性質(zhì)得點(diǎn)DAC的中點(diǎn),則BDAD,利用含30度的直角三角形三邊的關(guān)系計(jì)算出DH、BF,從而得到△BDF的面積;

2)如圖2,先證明△BAD≌△BCE得到ADCE,∠4=∠360°,再證明∠ADF=∠HBD=∠5,則可判斷△ADF≌△CED,從而得到AFCD,所以ACAD+CDCE+AFBC

1)解:作DHABH,如圖1

∵△ABC是等邊三角形,AB8AD4,

∴點(diǎn)DAC的中點(diǎn),∠CAB=60°

BDAD,

∴∠ADB90°,

DHAB

FHBH,∠ADH=30°

RtADH中,AHAD2

BH6,DH=2

BHHF6,

∴△BDF的面積=×(6+6)×212

2)證明:如圖2,

∵△ABC、△DEB都為等邊三角形,

∴∠4=∠ABC=∠DBE=∠660°,BABCBDBE

∴∠1=∠2,

在△BAD和△BCE

,

∴△BAD≌△BCESAS),

ADCE,∠4=∠360°,

而∠CHE=∠DHB,

∴∠5=∠HBD,

∵∠4=∠F+ADF60°,∠HBD+160°,

而∠1=∠F,

∴∠ADF=∠HBD=∠5

在△ADF和△CED

∴△ADF≌△CEDSAS),

AFCD,

ACAD+CDCE+AF,

BCAF+CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長正好是一根竹竿的長度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說:噢,我知道路燈有多高了!同學(xué)們,請你和小明一起解答這個(gè)問題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),經(jīng)過A(-2,6)的直線交x軸正半軸于點(diǎn)B,交y軸于點(diǎn)C,OB=OC,直線ADx軸負(fù)半軸于點(diǎn)D,若ABD的面積為27

1)求直線AD的解析式;

2)橫坐標(biāo)為m的點(diǎn)PAB上(不與點(diǎn)A,B重合),過點(diǎn)Px軸的平行線交AD于點(diǎn)E,設(shè)PE的長為yy≠0),求ym之間的函數(shù)關(guān)系式并直接寫出相應(yīng)的m的取值范圍;

3)在(2)的條件下,在x軸上是否存在點(diǎn)F,使PEF為等腰直角三角形?若存在求出點(diǎn)F的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與應(yīng)用:

閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?/span>,所以,從而(當(dāng)ab時(shí)取等號).

閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)時(shí),函數(shù)的最小值為

閱讀理解上述內(nèi)容,解答下列問題:

問題1:已知一個(gè)矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時(shí),周長的最小值為__________.

問題2:已知函數(shù)y1x+1(x>-1)與函數(shù)y2x2+2x+17(x>-1),當(dāng)x=__________時(shí), 的最小值為__________.

問題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個(gè)單位長度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)

(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;

(2)畫出將△ABC 繞原點(diǎn) O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;

(3)求(2)中線段 OA掃過的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB12,點(diǎn)FAB的中點(diǎn),過點(diǎn)FFDABAC于點(diǎn)D

1)若△AFD以每秒2個(gè)單位長度的速度沿射線FB向右移動(dòng),得到△A1F1D1,當(dāng)F1與點(diǎn)B重合時(shí)停止移動(dòng).設(shè)移動(dòng)時(shí)間為t秒,△A1F1D1與△CBF重疊部分的面積記為S.直接寫出St的函數(shù)關(guān)系式.

2)在(1)的基礎(chǔ)上,如果D1,BF構(gòu)成的△D1BF為等腰三角形,求出t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名采購員同去一家飼料公司購買兩次飼料.兩次飼料的價(jià)格分別為/千克和/千克(、都為正數(shù),且),兩名采購員的購貨方式不同,其中甲每次購買800千克;乙每次用去800元,而不管購買多少飼料.

1)用含、的代數(shù)式表示甲、乙兩名采購員兩次購買飼料的平均單價(jià)各是多少?

2)若規(guī)定:誰兩次購買飼料的平均單價(jià)低,誰的購貨方式合算,請你判斷甲、乙兩名采購員購貨方式哪個(gè)更合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點(diǎn)E

1)求以直線x=4為對稱軸,且過C與原點(diǎn)O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點(diǎn)E

2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為N,M是該拋物線上位于CN之間的一動(dòng)點(diǎn),求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)、,拋物線過點(diǎn)A,B,與y交于C點(diǎn),點(diǎn)Pmn)為拋物線上一點(diǎn).

1)求拋物線的解析式和點(diǎn)C的坐標(biāo);

2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;

3)當(dāng)∠PAB=∠ABC時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案