【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC 的三個頂點的坐標分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點 O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過的圖形面積.
【答案】(1)(2)見解析;(3).
【解析】試題分析:
(1)根據(jù)關(guān)于y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數(shù)即可點A1,B1,C1的坐標,根據(jù)坐標描出這三個點,再順次連接即可;
(2)連接AO,以AO為起始邊,O為頂點,逆時針旋轉(zhuǎn)90°,在終邊上截取A2O=AO,A2即為A的旋轉(zhuǎn)對應(yīng)點;同理可得B2,C2,再順次連接A2,B2,C2即可;
(3)(2)中線段 O A 掃過的圖形面積即為扇形AOA2的面積,所以由題易得半徑r=5,圓心角為旋轉(zhuǎn)角90°,利用扇形面積公式即可計算出結(jié)果.
試題解析:
(1)由題意畫圖如下,圖中△A1B1C1為所求三角形;
(2)由題意畫圖如下,圖中△A2B2C2為所求三角形;
(3)如上圖,線段OA掃過的圖形是扇形AOA2,
∵OA=,∠A2OA=90°,
∴S扇形A2OA= .
即線段OA旋轉(zhuǎn)過程中掃過的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:
請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.
(1)植樹3株的人數(shù)為 ;
(2)該班同學植樹株數(shù)的中位數(shù)是 ;
(3)求該班同學平均植樹的株數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°,點D在線段AC上.
(1)求∠DCE的度數(shù);
(2)當點D在線段AC上運動時(D不與A重合),請寫出一個反映DA,DC,DB之間關(guān)系的等式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商從市場得知如下信息:
某品牌空調(diào)扇 | 某品牌電風扇 | |
進價(元/臺) | 700 | 100 |
售價(元/臺) | 900 | 160 |
他現(xiàn)有40000元資金可用來一次性購進該品牌空調(diào)扇和電風扇共100臺,設(shè)該經(jīng)銷商購進空調(diào)扇臺,空調(diào)扇和電風扇全部銷售完后獲得利潤為元.
(1)求關(guān)于的函數(shù)解析式;
(2)利用函數(shù)性質(zhì),說明該經(jīng)銷商如何進貨可獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著電影《流浪地球》的熱映,科幻大神劉慈欣的著作受到廣大書迷的追捧,《流浪地球》《球狀閃電》《三體》《超新星紀元》四部小說在某網(wǎng)上書城熱銷.已知《流浪地球》的銷售單價與《球狀閃電》相同,《三體》的銷售單價是《超新星紀元》單價的3倍,《流浪地球》與《超新星紀元》的單價和大于40元且不超過50元;若自電影上映以來,《流浪地球》與《超新星紀元》的日銷售量相同,《球狀閃電》的日銷售量為《三體》日銷售量的3倍,《流浪地球》與《三體》的日銷售量和為450本,且《流浪地球》的日銷售量不低于《三體》的日銷量的且小于230本;《流浪地球》《三體》的日銷量額之和比《球狀閃電》《超新星紀元》的日銷售額之和多1575元.則當《流浪地球》《三體》這2部小說日銷額之和最多時,《流浪地球》的單價為_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AC上有一點D,分別以BD為邊作等邊△BDE和等腰△BDF,邊BC、DE交于點H,點F在BA延長線上且DB=DF,連接CE.
(1)若AB=8,AD=4,求△BDF的面積;
(2)求證:BC=AF+CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:
(1)畫出△ABC關(guān)于原點O成中心對稱的△A1B1C1,并寫出A1的坐標;
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后得到的△A2B2C2,并求出點C在旋轉(zhuǎn)過程中經(jīng)過的路徑長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數(shù)式表示線段AP= ;
(2)當t為何值時,點E在∠A的平分線上?
(3)當t為何值時,點A在線段PQ的垂直平分線上?
(4)連接PE,當t=1(s)時,求四邊形APEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中的網(wǎng)格由單位正方形構(gòu)成,△ABC中,A點坐標為(2,3),B點坐標為(-2,0),C點坐標為(0,-1).
(1)AC的長為______;
(2)求證:AC⊥BC;
(3)若以A、B、C及點D為頂點的四邊形為平行四邊形ABCD,畫出平行四邊形ABCD,并寫出D點的坐標______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com