已知:拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),且滿足4a+2b+c>0,以下結(jié)論:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:(1)因?yàn)閽佄锞y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),把點(diǎn)(-1,0)代入解析式,結(jié)合4a+2b+c>0,即可整理出a+b>0;
(2)②+①×2得,6a+3c>0,結(jié)合a<0,故可求出a+c>0;
(3)畫草圖可知c>0,結(jié)合a-b+c=0,可整理得-a+b+c=2c>0,從而求得-a+b+c>0;
(4)把(-1,0)代入解析式得a-b+c=0,可得出2a+c>0,再由a<0,可知c>0則c-2a>0,故可得出(c+2a)(c-2a)>0,即b2-2ac-5a2>0,進(jìn)而可得出結(jié)論.
解答:解:(1)因?yàn)閽佄锞y=ax2+bx+c(a<0)經(jīng)過點(diǎn)(-1,0),
所以原式可化為a-b+c=0----①,
又因?yàn)?a+2b+c>0----②,
所以②-①得:3a+3b>0,
即a+b>0;

(2)②+①×2得,6a+3c>0,
即2a+c>0,
∴a+c>-a,
∵a<0,
∴-a>0,
故a+c>0;

(3)因?yàn)?a+2b+c>0,可以看作y=ax2+bx+c(a<0)當(dāng)x=2時(shí)的值大于0,草圖為:
可見c>0,
∵a-b+c=0,
∴-a+b-c=0,
兩邊同時(shí)加2c得-a+b-c+2c=2c,
整理得-a+b+c=2c>0,
即-a+b+c>0;

(4)∵過(-1,0),代入得a-b+c=0,
∴b2-2ac-5a2=(a+c)2-2ac-5a2=c2-4a2=(c+2a)(c-2a)
又∵4a+2b+c>0
4a+2(a+c)+c>0
即2a+c>0①
∵a<0,
∴c>0
則c-2a>0②
由①②知(c+2a)(c-2a)>0,
所以b2-2ac-5a2>0,
即b2-2ac>5a2
綜上可知正確的個(gè)數(shù)有4個(gè).
故選D.
點(diǎn)評:此題是一道結(jié)論開放性題目,考查了二次函數(shù)的性質(zhì)、一元二次方程根的個(gè)數(shù)和圖象的位置之間的關(guān)系,同時(shí)結(jié)合了不等式的運(yùn)算,是一道難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為
3
,拋物線與x軸交于點(diǎn)P、Q,問是否精英家教網(wǎng)存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
(1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);
(2)設(shè)拋物線與直線的兩個(gè)交點(diǎn)為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實(shí)數(shù)k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點(diǎn)P,如圖所示.
(1)頂點(diǎn)P的坐標(biāo)是
(-1,4)
(-1,4)
;
(2)若直線y=ax+b經(jīng)過另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省綿陽市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案