如圖,在平行四邊形ABCD中,E、F分別是AB、CD的中點(diǎn),AF與DE相交于點(diǎn)G,CE與BF相交于點(diǎn)H.
(1)試說明四邊形EHFG是平行四邊形.
(2)平行四邊形ABCD滿足什么條件EHFG會(huì)成為一個(gè)菱形?說出你的理由.
(3)平行四邊形ABCD再滿足什么條件EHFG就會(huì)成為一個(gè)正方形?說出你的理由.

解:(1)∵四邊形ABCD是平行四邊形,
∴AE∥CF,AB=CD,
∵E是AB中點(diǎn),F(xiàn)是CD中點(diǎn),
∴AE=CF,
∴四邊形AECF是平行四邊形,
∴AF∥CE.
同理可得DE∥BF,
∴四邊形FGEH是平行四邊形;

(2)當(dāng)平行四邊形ABCD是矩形時(shí),平行四邊形EHFG是菱形.
∵四邊形ABCD是矩形
∴∠ABC=∠DCB=90°,
∵E是AB中點(diǎn),F(xiàn)是CD中點(diǎn),
∴BE=CF,
在△EBC與△FCB中,

∴△EBC≌△FCB,
∴CE=BF,
∠ECB=∠FBC,
BH=CH,
EH=FH,
平行四邊形EHFG是菱形;


(3)當(dāng)平行四邊形ABCD是矩形,并且AB=2AD時(shí),
平行四邊形EHFG是正方形.
∵E,F(xiàn)分別為AB,CD的中點(diǎn),且AB=CD,
∴AE=DF,且AE∥DF,
∴四邊形AEFD為平行四邊形,
∴AD=EF,
又∵AB=2AD,E為AB中點(diǎn),則AB=2AE,
于是有AE=AD=AB,
這時(shí),EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,
∴四邊形ADFE是正方形,
∴EG=FG=AF,AF⊥DE,∠EGF=90°,
∴此時(shí),平行四邊形EHFG是正方形.
分析:(1)通過證明兩組對(duì)邊分別平行,可得四邊形EHFG是平行四邊形;
(2)當(dāng)平行四邊形ABCD是矩形時(shí),通過證明有一組鄰邊相等,可得平行四邊形EHFG是菱形;
(3)當(dāng)平行四邊形ABCD是矩形,并且AB=2AD時(shí),先證明四邊形ADFE是正方形,得出有一個(gè)內(nèi)角等于90°,從而證明菱形EHFG為一個(gè)正方形.
點(diǎn)評(píng):本題屬于綜合題,考查了平行四邊形的判定與性質(zhì),菱形的判定和正方形的判定,注意找準(zhǔn)條件,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案