(2009•威海)如圖1,在正方形ABCD中,E,F(xiàn),G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,F(xiàn)H,交點(diǎn)為O.
(1)如圖2,連接EF,F(xiàn)G,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(2)將正方形ABCD沿線段EG,HF剪開(kāi),再把得到的四個(gè)四邊形按圖3的方式拼接成一個(gè)四邊形.若正方形ABCD的邊長(zhǎng)為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為_(kāi)_____cm2

【答案】分析:(1)先證明△AEH≌△BFE≌△CGF≌△DHG,可得出四邊形GHEF是菱形,再根據(jù)全等三角形角之間的關(guān)系,又可得出菱形的一個(gè)角是直角,那么就可得出四邊形GHEF是正方形.
(2)根據(jù)已知條件,可以知道重新拼成的四邊形是正方形(因?yàn)檎叫蜧HEF的對(duì)角線翻到了外邊,做了新拼成的正方形的邊長(zhǎng)),利用勾股定理求出GF和GO、FO的長(zhǎng),所的面積是10.4個(gè)四邊形GOFC的面積就是陰影部分的面積.
解答:解:(1)四邊形EFGH是正方形.(1分)
證明:∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵HA=EB=FC=GD,
∴AE=BF=CG=DH,(2分)
∴△AEH≌△BFE≌△CGF≌△DHG,(3分)
∴EF=FG=GH=HE,(4分)
∴四邊形EFGH是菱形,(5分)
∵△DHG≌△AEH,
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,(6分)
∴四邊形EFGH是正方形.(7分)

(2)∵HA=EB=FC=GD=1,AB=BC=CD=AD=3,
∴GF=EF=EH=GH=,
∵由(1)知,四邊形EFGH是正方形,
∴GO=OF,∠GOF=90°,
由勾股定理得:GO=OF=,
∵S四邊形FCGO=×1×2+××=
∴S陰影=-S四邊形FCGO×4=10-9=1.
點(diǎn)評(píng):本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),以及菱形的判定的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省荊州市江陵縣五三中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專(zhuān)練8:二次函數(shù)(解析版) 題型:解答題

(2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱(chēng)軸為直線l,D為對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•威海)如圖,在四邊形ABCD中,E是BC邊的中點(diǎn),連接DE并延長(zhǎng),交AB的延長(zhǎng)線于F點(diǎn),AB=BF.添加一個(gè)條件,使四邊形ABCD是平行四邊形.你認(rèn)為下面四個(gè)條件中可選擇的是( )

A.AD=BC
B.CD=BF
C.∠A=∠C
D.∠F=∠CDE

查看答案和解析>>

同步練習(xí)冊(cè)答案