【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2,乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,3,現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法,寫出點M的所有可能的坐標(biāo);
(2)求點M(x,y)在函數(shù)y=﹣的圖象上的概率.
【答案】(1)點M所有可能的坐標(biāo)為:(0,﹣1),(0,﹣2),(0,3),(1,﹣1),(1,﹣2),(1,3),(2,﹣1),(2,﹣2),(2,3);(2).
【解析】
(1)根據(jù)題意畫樹狀圖即可得到結(jié)論;
(2)根據(jù)M(x,y)在函數(shù)y=﹣的圖象上的有(1,﹣2)和(2,﹣1),于是得到結(jié)論.
(1)畫樹狀圖得,
則點M所有可能的坐標(biāo)為:(0,﹣1),(0,﹣2),(0,3),(1,﹣1),(1,﹣2),(1,3),(2,﹣1),(2,﹣2),(2,3);
(2)∵M(x,y)在函數(shù)y=﹣的圖象上的有(1,﹣2)和(2,﹣1),
∴點M(x,y)落在函數(shù)y=﹣的圖象上的概率為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當(dāng)m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC=2,以AC為直徑作半圓,圓心為點O;以點C為圓心,BC為半徑作⊙C,過點O作BC的平行線交兩弧于點D、E,則陰影部分的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(1,0),B(3,0)兩點與y軸交于點C,D為拋物線頂點.
(1)求拋物線的解析式;
(2)如圖1,過點C的直線交拋物線于另一點E,若∠ACE=60°,求點E的坐標(biāo).
(3)如圖2,直線交拋物線于P,Q兩點,求△DPQ面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“概率為0.0001的事件”是不可能事件
B.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次
C.“任意畫出一個等邊三角形,它是軸對稱圖形”是隨機事件
D.“任意畫出一個平行四邊行,它是中心對稱圖形”是必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點P是BC邊上一點,連接AP交對角線BD于點E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點M,G,F,N.
(1)求證:;
(2)若,求.
(3)如圖2,在(2)的條件下,連接CF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的圖像與軸的一個交點為,另一交點為,與軸交于點,對稱軸是直線.
(1)求該二次函數(shù)的表達式及頂點坐標(biāo);
(2)畫出此二次函數(shù)的大致圖象;利用圖象回答:當(dāng)取何值時,?
(3)若點在拋物線的圖像上,且點到軸距離小于3,則的取值范圍為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為 1 個單位的正方形,建立平面直角坐標(biāo)系后, 的頂點均在格點上,點 的坐標(biāo)為.
(1)畫出關(guān)于 軸對稱的;寫出頂點的坐標(biāo)( , ),( , ).
(2)畫出將繞原點 按順時針旋轉(zhuǎn) 所得的;寫出頂點的坐標(biāo)( , ),( , ),( , ).
(3)與成中心對稱圖形嗎?若成中心對稱圖形,寫出對稱中心的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com