如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,頂點C在y軸的負(fù)半精英家教網(wǎng)軸上,tan∠ABC=
34
,點P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點坐標(biāo);
(2)求AP的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.
分析:(1)根據(jù)PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.解方程x2-12x+27=0,得x1=3,x2=9,得PO=3.即P(0,-3);
(2)由(1)可知,PO=3,PC=9,OC=12,∠ABC=∠ACO,所以tan∠ACO=
OA
OC
=
3
4
,可求得A(-9,0),所以AP=
OA2+OP2
=3
10
;
(3)先根據(jù)梯形的性質(zhì)求出對應(yīng)的點Q的坐標(biāo),再利用待定系數(shù)解出直線PQ解析式為:y=-
4
3
x-3或y=-
1
12
x-3.
解答:解:(1)解方程x2-12x+27=0,得x1=3,x2=9,
∵PO<PC,
∴PO=3,
∴P(0,-3);
精英家教網(wǎng)
(2)∵PO=3,PC=9,
∴OC=12,
∵∠ABC=∠ACO,
∴tan∠ACO=
OA
OC
=
3
4

∴OA=9,
∴A(-9,0),
∴AP=
OA2+OP2
=3
10
;

(3)存在,
①當(dāng)CQ∥PA時,直線PA的解析式為:y=-
1
3
x-3,
∴直線CQ的解析式為:y=-
1
3
x-12,
∴Q(-36,0),
∴直線PQ解析式為:y=-
1
12
x-3,
②當(dāng)PQ′∥AC時,直線AC的解析式為:y=-
4
3
x-12,
∴直線PQ′的解析式為:y=-
4
3
x-3,
綜上所述:直線PQ解析式為:y=-
4
3
x-3或y=-
1
12
x-3,
說明:如果學(xué)生有不同于本參考答案的解題方法,只要正確,可參照本評分標(biāo)準(zhǔn),酌情給分.
點評:主要考查了函數(shù)和幾何圖形的綜合運用.解題的關(guān)鍵是會靈活的運用函數(shù)圖象的性質(zhì)和交點的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案