(1)如圖1,正方形ABCD中,E,F(xiàn),GH分別為四條邊上的點(diǎn),并且AE=BF=CG=DH.求證:四邊形EFGH為正方形.
(2)如圖2,有一塊邊長(zhǎng)1米的正方形鋼板,被裁去長(zhǎng)為
1
4
米、寬為
1
6
米的矩形兩角,現(xiàn)要將剩余部分重新裁成一正方形,使其四個(gè)頂點(diǎn)在原鋼板邊緣上,且P點(diǎn)在裁下的正方形一邊上,問(wèn)如何剪裁使得該正方形面積最大,最大面積是多少?
(1)證明:∵AB=BC=CD=DA,AE=BF=CG=DH,
∴EB=FC=GD=HA,
∵∠A=∠B=∠C=∠D=90°,
∴△AEH≌△BFE≌△CGF≌△DHG,(2分)
∴HE=EF=FG=GH,∠1=∠2,(3分)
∴四邊形EFGH是菱形,(4分)
∵∠1+∠3=90°,
∴∠2+∠3=90°,
∴∠4=90°,
∴四邊形EFGH是正方形;(5分)

(2)如圖,設(shè)原正方形為ABCD,正方形EFGH是要裁下的正方形,且EH過(guò)點(diǎn)P.
設(shè)AH=x,則AE=1-x.
∵M(jìn)PAH,
1
6
x
=
1-x-
1
4
1-x
,(6分)
整理得12x2-11x+2=0,
解得x1=
1
4
,x2=
2
3
,(7分)
當(dāng)x=
1
4
時(shí),S正方形EFGH=(
1
4
)2+(1-
1
4
)2=
5
8
,
當(dāng)x=
2
3
時(shí),S正方形EFGH=(
2
3
)2+(1-
2
3
)2=
5
9
5
8
,
∴當(dāng)BE=DG=
1
4
米,BF=DH=
3
4
米時(shí),裁下正方形面積最大,面積為
5
8
2.(9分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長(zhǎng)線(xiàn)上的點(diǎn),且BE=DF,則∠CEF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),求證:①BD⊥CF.②CF=BC-CD.
(2)如圖2,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),其它條件不變,請(qǐng)直接寫(xiě)出CF、BC、CD三條線(xiàn)段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的反向延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A、F分別在直線(xiàn)BC的兩側(cè),其它條件不變:①請(qǐng)直接寫(xiě)出CF、BC、CD三條線(xiàn)段之間的關(guān)系.②若連接正方形對(duì)角線(xiàn)AE、DF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,平面直角坐標(biāo)系xOy中,正方形ABCD的邊長(zhǎng)為4,它的頂點(diǎn)A在x軸的正半軸上運(yùn)動(dòng),頂點(diǎn)D在y軸的正半軸上運(yùn)動(dòng)(點(diǎn)A,D都不與原點(diǎn)重合),頂點(diǎn)B,C都在第一象限,且對(duì)角線(xiàn)AC,BD相交于點(diǎn)P,連接OP.
(1)當(dāng)OA=OD時(shí),點(diǎn)D的坐標(biāo)為_(kāi)_____,∠POA=______°;
(2)當(dāng)OA<OD時(shí),求證:OP平分∠DOA;
(3)設(shè)點(diǎn)P到y(tǒng)軸的距離為d,則在點(diǎn)A,D運(yùn)動(dòng)的過(guò)程中,d的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.求證:
①△ABG≌△AFG;
②BG=GC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD內(nèi)接于⊙O,E為DC的中點(diǎn),直線(xiàn)BE交⊙O于點(diǎn)F,如果⊙O的半徑為
2
,則O點(diǎn)到BE的距離OM=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以正方形ABCD的對(duì)角線(xiàn)AC為一邊作菱形AEFC,則∠CFA=( 。
A.30°B.45°C.22.5°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為m,△BPC是等邊三角形,則△CDP的面積為_(kāi)_____(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD,E是BC中點(diǎn),∠AEF=90°,∠1=∠2
(1)線(xiàn)段AE與EF的數(shù)量關(guān)系為_(kāi)_____
(2)在線(xiàn)段BC上,若E不是BC中點(diǎn),上述關(guān)系是否成立?若成立,加以證明;若不成立,說(shuō)明理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案