已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,且BE=DF,則∠CEF=______.
∵四邊形ABCD是正方形,
∴CD=BC,∠CDF=∠CBE=90°,
在△CDF和△CBE中
CD=BC
∠CDF=∠CBE
DF=BE
,
∴△CDF≌△CBE,
∴CF=CE,∠DCF=∠BCE.
∵∠DCE+∠BCE=90°,
∴∠DCF+∠BCE=90°.
即∠FCE=90°,
∴△FEC是等腰直角三角形.
∴∠CEF=45°.
故答案為:45°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在等腰梯形ABCD中,ADBC,對角線AC⊥BD于點O,AE⊥BC,DF⊥BC,垂足分別為E,F(xiàn),AD=4,BC=8,則AE+EF=( 。
A.9B.10C.11D.20

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有若干個邊長都為2的小正方形.若小正方形Ⅱ的一個頂點在小正方形I的中心O1,如圖所示;類似地小正方形Ⅲ的一個頂點在小正方形Ⅱ的中心O2,并且小正方形I與小正方形Ⅲ不相重疊,如果若干個小正方形都按這種方法拼接,問需要幾個小正方形能使拼接出的圖形的陰影部分的面積等于一個小正方形的面積,并給出你的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角坐標系中,正方形ABCD的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方形ABCD對角線交于O,點O是正方形A′B′C′O的一個頂點,兩個正方形的邊長都是2,那么正方形A′B′C′O繞O無論怎樣轉(zhuǎn)動時,圖中兩個正方形重疊部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為1,點P為BC邊上的任意一點(可與點B或C重合),分別過B、D作AP的垂線段,垂足分別是B1、D1.猜想:(DD1)2+(BB1)2的值,并對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

正方形ABCD中,∠DAF=35°,AF交對角線BD于E,交CD于F,
(1)說明AE=EC;
(2)求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,正方形ABCD中,E,F(xiàn),GH分別為四條邊上的點,并且AE=BF=CG=DH.求證:四邊形EFGH為正方形.
(2)如圖2,有一塊邊長1米的正方形鋼板,被裁去長為
1
4
米、寬為
1
6
米的矩形兩角,現(xiàn)要將剩余部分重新裁成一正方形,使其四個頂點在原鋼板邊緣上,且P點在裁下的正方形一邊上,問如何剪裁使得該正方形面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案